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Abstract. We develop decision procedures for extended regular expres-
sions in the new ERE# framework that uses span semantics, utilizing the
power of symbolic derivatives. We prove a normal form theorem in Lean
for ERE# that is closed under all Boolean operations and provides the
basis for the given decision procedures. The tool is evaluated on exist-
ing SMT benchmarks for regexes that shows it to be the fastest solver
to date – often orders of magnitude faster than state-of-the-art – albeit
specialized for the single-variable fragment of string theory.

1 Introduction

The new and currently fastest nonbacktracking regex matcher RE# [46] supports
match search with regexes extended with intersection (&), complement (~), and
restricted lookarounds. Extended operators in RE# provide a separation of con-
cerns making it possible to express typical search patterns more naturally and
compactly, as discussed at length in [46]. In this work, we develop decision pro-
cedures for the Boolean closure ERE# of RE# that enables various practical
applications for debugging, compiler optimizations, and verification tasks.

Support for & and ~ implies a need to decide nonemptiness of regexes as a
basic debugging feature. For example, the regex .*\d.*&~(.*\w.*) must match
at least one digit but may not contain any word-letters – thus, it matches nothing
because all digits are word-letters. Character classes can also be easily misunder-
stood due to subtle semantic differences between platforms or feature interac-
tions in combination with common regex options, such as case insensitivity (typ-
ically inlined with (?i:. . .)) where equivalence checking is essential for ensuring
correctness and consistency of the intended behavior. It is possible that 𝑅1 ≡ 𝑅2

but (?i:𝑅1) . (?i:𝑅2), e.g., for 𝑅1 = [^D] and 𝑅2 = [\u0000-CE-\uFFFF].
During derivative based compilation of regexes into DFAs, it is common to

encounter unions of the form 𝑅1|𝑅2 as target states of transitions. In order to
reduce memory footprint, it is crucial to decide if 𝑅𝑖 subsumes 𝑅 𝑗 , and if so,
to reuse 𝑅𝑖 as the sole target state, instead of introducing a new state for the
union. Several basic rewrites necessary were already pointed out in [40], but
bounded loops in particular are highly problematic [44]. E.g., the derivative of
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a regex 𝑅 = .*a?{𝑘} for a is 𝑅|a?{𝑘−1} that can be simplified to 𝑅 because
𝑅 subsumes a?{𝑘−1}, where a? abbreviates a|𝜀. Omitting such rewrites can
quickly lead to a state space explosion up to size 2𝑘 – observe that 𝑘 = 𝑂 (2 |𝑅 | )
here! For DFA generation, such subsumption checking must be fast in practice.

Dealing with differences between PCRE and POSIX semantics for a regex
is a common problem.3 In PCRE, also known as backtracking or leftmost-eager
semantics, the union operator | is noncommutative where in a regex 𝑅1|𝑅2, a
match for 𝑅2 is only sought when 𝑅1 fails to match. Note that this difference is
relevant for span semantics that has recently been formalized in Lean [50], but
irrelevant for language semantics (IsMatch) that is identical under both PCRE
and POSIX. A technique to decide if a union 𝑅1|𝑅2 in PCRE has the same
span semantics under POSIX, where union is commutative, is to decide match
equivalence between 𝑅1|𝑅2 and 𝑅1|𝑅2&~(𝑅1·_*).

If the span semantics of a regex differs between PCRE and POSIX then the
regex may contain unreachable cases under PCRE. E.g., the BurntSushi/rebar
benchmarking tool [24] – widely used for industrial PCRE matchers – uses a
dictionary benchmark containing unions such as may|mayo. The regex may|mayo

will never match "mayo" for any input under PCRE semantics and has the exact
same behavior as the regex may. Most industrial regex matchers use PCRE se-
mantics, resulting in different behavior to what is intuitively assumed, as | is not
union of languages in PCRE. It is a common programming error to define a regex
with unintended behavior this way. For example, by using the above technique,
may|mayo&~(may_*) effectively deletes the alternative mayo from may|mayo while
mayo|may would remain intact because may&~(mayo_*) ≡ may.

The logic ERE#, that is introduced in Section 4, is a novel contribution
and fundamental for many decision problems. In particular, it lifts RE# to the
status of an Effective Boolean Algebra over spans. RE# is closed only under
intersection and each regex admits a linear translation to a core regex of the
form (?<=𝑅1)𝑅2(?=𝑅3) where no 𝑅𝑖 contains lookarounds. The span semantics
(𝑢1, 𝑢2, 𝑢3) |= (?<=𝑅1)𝑅2(?=𝑅3) intuitively means that 𝑢1𝑢2𝑢3 is a word such
that 𝑢𝑖 ∈ L(𝑅𝑖) where 𝑢2 is the main match with 𝑢1 and 𝑢3 as the surrounding
context. For many decision problems, like subsumption, it became necessary to
support regexes like (?<=𝑅1)𝑅2(?=𝑅3)&~((?<=𝑅′1)𝑅′2(?=𝑅′3)) that fall outside
the fragment for matching in RE#.

Currently, ERE# semantics is not directly expressible in SMT-LIB as it would
require support for lookarounds and span semantics. Section 7 proposes an SMT-
LIB format for extending RegLan with lookarounds and span semantics.

Contributions. We introduce an extension ERE# of the RE# class that is
Boolean closed and formalize a normal form theorem (Theorem 2) for it in Lean
allowing us to develop decision procedures for ERE#, including emptiness, sub-
sumption, and equivalence, that are of primary interest in the ERE# framework,
as discussed above. It is also possible to use ERE# for pre-processing in SMT
solvers. One can invoke ERE# from the simplifier in Z3 [39], to pre-process

3 See for example https://stackoverflow.com/questions/4733416.
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Fig. 1: Cactus plot of CPU time for 9 solvers and 19 509 SMT benchmarks. The
𝑦-axis is in log-scale. For ERE#-solver (resharp-solver) no benchmark needed
>0.1s and less than 100 benchmarks needed >0.01s.

RegLan constraints, which can moreover be supported incrementally [12]. The
main decision procedures for ERE# reduce, via the normal form theorem and
the nonemptiness algorithm (Theorem 1), to nonemptiness in ERE.

We have conducted extensive evaluation on existing SMT benchmarks for
the fragment of ERE# without lookarounds. The evaluation focuses on available
SMT benchmarks that include all we could find on RegLan and benchmarks
that reduce to the single string variable fragment of string constraints. The ex-
periments demonstrate that ERE# consistently outperforms all state-of-the-art
solvers, often by orders of magnitude, see Figure 1. The main reasons are: 1)
specialization to regex decision problems combined with alphabet compression
to bit-vectors; 2) aggressive rewrite rules that rely on symbolic derivatives and
transition regex rewrites [43] – in particular lazy propagation rules for inter-
section and complement ; 3) use of reversal theorem for ERE≤ [50] – to decide
nonemptiness of the reverse of a regex; 4) use of XOR as a Boolean operator
directly supported by derivatives, for deciding equivalence in some cases.

Artifact. The paper is accompanied by an artifact [47] for Lean formalization
of Theorem 2, and evaluation confirming the results in Figure 1 and Table 1.

2 Related Work

The development of string constraint solvers has a long-standing history, with
prominent general-purpose SMT solvers such as Z3 [39] and CVC5 [5], along-
side specialized solvers [10,19,36,11]. String constraint solving approaches vary
widely, with methods based on a mixture of automata, word equations, and other



techniques. Many existing tools handle a broader range of constraints, including
those beyond regular languages, such as context-free constraints. However, our
work is not intended to compete with these general-purpose solvers; instead,
we focus on a specialized fragment relevant to our setting. For a comprehensive
overview of existing techniques and tools, we refer to the recent surveys [3,26].
Below we outline the key differences between the existing tools and our approach.

The solvers which support derivative-based lazy exploration of regular ex-
pressions are the sequence solver [43] in Z3 and CVC5 [5]. The former was the
first to use transition regexes as part of the solver. However, our method lever-
ages systematic simplifications and rewrites, enabling us to solve many SMT-LIB
benchmarks in a fraction of a second, whereas the sequence solver fails to do so
even after hours. Additionally, our solution is specialized for regexes, avoiding
the overhead of supporting other theories. CVC5 [5] also uses a derivatives based
approach [32] to solve regular expression constraints in its string solver [31,41],
similarly relying on aggressive simplifications.

Kepler22, introduced in [30], employs a two-phase approach for solving string
constraints. In the first phase, it constructs a cyclic reduction tree that repre-
sents all solutions to a conjunction of word equations and regular membership
predicates. The second phase uses specialized procedures to infer length con-
straints from the set of all solutions, constituting a decision procedure for the
straight line and quadratic fragments of string equations. While the authors re-
port promising experimental results, we were not able to find an implementation
to include in our evaluation. The tool NFA2SAT, presented in [33], performs an
eager reduction of string operations and regular expression constraints into SAT,
enabling incremental SAT solving. However, we were not able to find an artifact
to include in our evaluation.

Several extensions to Z3 incorporate support for string constraints. The anal-
ysis in [9] focuses on fragments without string equality (i.e., without word equa-
tions), which aligns with the scope of our solver. Z3-Noodler [19] utilizes the
MATA library [20] that implements basic algorithms for automata and also
fast simulation reduction and antichain-based language inclusion checking. It
uses novel techniques such as a stabilization-based procedure [18,14] for string-
constraint solving. Z3str4 [36] builds on Z3str3 [10] and extends it with a string-
to-bit-vector reduction. Z3alpha [34] is built on top of Z3 and the novelty lies in
untilizing Monte Carlo Tree Search based SMT strategy synthesis. It ranked sec-
ond in the 24-second performance category at SMT-COMP 2024, solving more
tasks than all other solvers except Z3-Noodler.

Another notable tool is Ostrich [17], a solver that supports advanced reg-
ular expression features such as capture groups, lazy quantifiers, and anchors.
Several extensions of Ostrich have been developed. For instance, [16] introduces
a model based on prioritized streaming string transducers, while [27,28] builds
on cost-enriched finite-state automata. Another recent extension to Ostrich is
the tool SECO [29] based on parametric symbolic automata which extends sym-
bolic automata to allow free variables on the transition guards. Ostrich has also
been extended using Parikh images [23] to reason about word lengths. While



these Parikh image-based approaches have also been applied to accelerate string
constraint solving [25], they fall outside the scope of this paper.

Equivalence algorithms for classical regular expressions have been studied
in [1,2] based on partial derivatives [4]. The main algorithm was also implemented
in [37] using Coq, and it operates incrementally by avoiding the construction of
the full automaton during the process. The additional challenge in the case of
ERE# is twofold: to support intersection and complement incrementally, and
to work modulo large (or infinite) alphabets A (given as an EBA), which we
are currently investigating. Moreover, in the case of ERE#, equivalence should
ideally also support lookarounds and therefore be based on span semantics.

3 Preliminaries

This section includes the main background notations and definitions used in the
rest of the paper. To support large alphabets such as Unicode, we use effective
Boolean algebras [22] (EBAs) to represent character classes symbolically via
predicates, typical examples include: digits \d, word-letters \w, and white-space
characters \s. Extended regular expressions or regexes support intersection and
complement as well as lookarounds in the full class ERE≤ [46,50]. The latter
requires their semantics to be based on locations and spans due to context con-
ditions imposed by lookarounds. Regexes use nested if-then-else terms called
transition regexes [43,50] to represent their symbolic derivatives. The main in-
tuition is that the symbolic derivative 𝛿 (𝑅) of a regex 𝑅 is a transition regex
representing a partial evaluation for 𝑅 of the Brzozowski derivative [15] 𝐷𝑎 (𝑅)
for 𝑎 ∈ Σ. The evaluation of 𝛿 (𝑅) for 𝑎 ∈ Σ, 𝛿 (𝑅) [𝑎], equals 𝐷𝑎 (𝑅). The class
ERE#, defined in Section 4, forms a proper subclass of ERE≤ but its match
semantics is also based on spans and coincides with the match semantics of the
whole ERE≤ . The rest of this section defines these notions formally.

Before the formal definitions below, we illustrate the notions using the regex
𝑅 = _*\d_*&_*\w_*&_*\s_* that matches any string containing a digit, a word-
letter, and a white-space character, where _ matches all characters and & is regex
intersection. The symbolic derivative 𝛿 (𝑅) of 𝑅 is the transition regex:

𝛿 (𝑅) = ite(\d, _*\s_*, ite(\w, _*\d_*&_*\s_*, ite(\s, _*\d_*&_*\w_*, 𝑅)))

The transition regex is illustrated as a binary decision tree in Figure 2 whose
conditions are the highlighted predicates \d, \w, and \s. The else-case branches
of 𝛿 (𝑅) are dashed and the leaves of 𝛿 (𝑅) are regexes (including 𝑅 itself). E.g.,
𝛿 (𝑅) [‘a’] = _*\d_*&_*\s_* and 𝛿 (𝑅) [‘#’] = 𝑅. When computing 𝛿 (𝑅) the
alphabet EBA was used to to eliminate unreachable subterms in 𝛿 (𝑅) through
cleaning [43]. Therefore, 𝛿 (𝑅) was simplified by using the facts that \d implies
\w (since all digits are word-letters), while \s is disjoint from both \w and \d.

Effective Boolean Algebras. An Effective Boolean Algebra (EBA) over an
element universe Σ is a tuple (Σ,A, ⊨,⊥, _,⊔,⊓,𝑐 ) where A is a set of predicates



_*\s_* _*\d_*&_*\w_*&_*\s_*

_*\d_*&_*\w_*

_*\d_*&_*\s_*
\w

\d \s

Fig. 2: Clean symbolic derivative of the regex _*\d_*&_*\w_*&_*\s_*.

that is closed under the Boolean connectives and contains ⊥ and _. For 𝑎 ∈ Σ

and 𝛼 ∈ A the models relation 𝑎 ⊨ 𝛼 with [[𝛼]] def
= {𝑎 ∈ Σ | 𝑎 ⊨ 𝛼} obeys

classical Tarski laws such that [[⊥]] = ∅ and [[_]] = Σ. For 𝛼, 𝛽 ∈ A let 𝛼 ≡ 𝛽
def
=

[[𝛼]] = [[𝛽]] . If 𝛼 . ⊥ then 𝛼 is satisfiable (SAT(𝛼)). All the connectives must
be computable and ⊨ must be decidable.

We write A also for the EBA itself and say that A is decidable if SAT(𝛼)
is decidable. We use (Σ,A, ⊨,⊥, _,⊔,⊓,𝑐 ) as a given core alphabet EBA. When
working with regexes, it is a standard assumption that. is a predicate denoting
all characters except the newline character (predicate) \n, i.e., _ ≡.⊔ \n.

Locations and Spans. A location is a pair of words in Σ∗ × Σ∗. Let 𝑤 ∈ Σ∗. A
location in 𝑤 is a location (𝑢, 𝑣) such that 𝑤 = 𝑢𝑣. The intuition is that a location
in 𝑤 specifies a border inside 𝑤. A location (𝜖, 𝑤) is initial and a location (𝑤, 𝜖)
is final. For any location 𝑥 let the kind of 𝑥 be (IsInitial(𝑥), IsFinal(𝑥)) ∈ B × B
where B = {true, false}.

A span is a triple of words in Span def
= Σ∗ × Σ∗ × Σ∗. A span 𝜃 = (𝑢, 𝑣, 𝑠)

has two locations the beginning location beg (𝜃) def
= (𝑢, 𝑣𝑠) and the end location

end (𝜃) def
= (𝑢𝑣, 𝑠); prefix (𝜃) def

= 𝑢 is the prefix of the span, suffix (𝜃) def
= 𝑠 is the

suffix of the span, and match (𝜃) def
= 𝑣 is the match of the span. The word of the

span is word (𝜃) def
= 𝑢𝑣𝑠. We lift all the definitions to sets of spans as usual.

A span in 𝑤 is a span (𝑢, 𝑣, 𝑠) such that 𝑤 = 𝑢𝑣𝑠. Intuitively, a span (𝑢, 𝑣, 𝑠)
represents a regex match in a word 𝑤 with 𝑣 as the primary matched substring of
𝑤 where the prefix and the suffix are some sufficient lookaround context words.
The width of a span (𝑢, 𝑣, 𝑠) is the length |𝑣 | of its match 𝑣.

Full Class ERE with Lookarounds. The class ERE≤ is defined as follows.
Members of ERE≤ are denoted here by 𝑅. Concatenation (·) is often implicit
by juxtaposition. All operators appear in order of precedence where union (|)
binds weakest and complement (~) binds strongest. Let 𝜓 ∈ A and let 𝑚 > 0.

𝑅 ::= 𝜓 | 𝜀 | 𝑅1|𝑅2 | 𝑅1&𝑅2 | 𝑅1·𝑅2 | 𝑅{𝑚} | 𝑅* | ~𝑅 |
(?<=𝑅) | (?<!𝑅) | (?=𝑅) | (?!𝑅)

The regex denoting nothing is the predicate ⊥. Let 𝑅{0} def
= 𝜀. We write 𝑅+

for 𝑅·𝑅*. Union is also called alternation or disjunction. The regexes (?=𝑅),
(?!𝑅), (?<=𝑅), and (?<!𝑅) are lookarounds; (?=𝑅) is (positive) lookahead,



(?!𝑅) is negative lookahead, (?<=𝑅) is (positive) lookbehind, and (?<!𝑅) is
negative lookbehind. Let \A def

= (?<!_) and \z
def
= (?!_).

ERE is the subclass of ERE≤ without lookarounds and EREï extends ERE
by allowing also the start anchor \A and the end anchor \z as primitive regexes.
RE≤ (resp. RE) is the subclass of ERE≤ (resp. ERE) without & and ~.

Match Semantics of ERE with Lookarounds. The match semantics of
regexes in ERE≤ uses spans [46,50]. Equivalent formulations of the semantics
of RE with lookarounds appear originally in [38, Section 3.7] via derivation
relations, and in [35,7] using a variant of spans. Let 𝜃 = (𝑢, 𝑣, 𝑠) be a span in a
word 𝑤. Then 𝜃 models 𝑅 or 𝑅 matches 𝜃 is denoted by 𝜃 |= 𝑅. We say that 𝑅

matches 𝑤 iff 𝑅 matches some span in 𝑤. Recall that 𝑅{0} def
= 𝜀 and let 𝑚 > 0.

𝜃 |= 𝐿 | 𝑅
def
= 𝜃 |= 𝐿 ∨ 𝜃 |= 𝑅

𝜃 |= 𝐿 & 𝑅
def
= 𝜃 |= 𝐿 ∧ 𝜃 |= 𝑅

𝜃 |= ~𝑅 def
= 𝜃 ⧸|= 𝑅

𝜃 |= 𝑅*
def
= ∃ 𝑛 ≥ 0 : 𝜃 |= 𝑅{𝑛}

(𝑢, 𝑣, 𝑠) |= 𝜀
def
= 𝑣 = 𝜖

(𝑢, 𝑣, 𝑠) |=𝜓
def
= |𝑣 | = 1 ∧ 𝑣 ⊨ 𝜓

(𝑢, 𝑣, 𝑠) |= 𝐿·𝑅 def
= ∃ 𝑥, 𝑦 : 𝑣 = 𝑥𝑦 ∧ (𝑢, 𝑥, 𝑦𝑠) |= 𝐿 ∧ (𝑢𝑥, 𝑦, 𝑠) |= 𝑅

(𝑢, 𝑣, 𝑠) |= 𝑅{𝑚} def
= ∃ 𝑥, 𝑦 : 𝑣 = 𝑥𝑦 ∧ (𝑢, 𝑥, 𝑦𝑠) |= 𝑅 ∧ (𝑢𝑥, 𝑦, 𝑠) |= 𝑅{𝑚−1}

(𝑢, 𝑣, 𝑠) |= (?<=𝑅) def
= 𝑣 = 𝜖 ∧ (𝜖, 𝑢, 𝑠) |= _*·𝑅

(𝑢, 𝑣, 𝑠) |= (?<!𝑅) def
= 𝑣 = 𝜖 ∧ (𝜖, 𝑢, 𝑠) ⧸|= _*·𝑅

(𝑢, 𝑣, 𝑠) |= (?=𝑅) def
= 𝑣 = 𝜖 ∧ (𝑢, 𝑠, 𝜖) |= 𝑅·_*

(𝑢, 𝑣, 𝑠) |= (?!𝑅) def
= 𝑣 = 𝜖 ∧ (𝑢, 𝑠, 𝜖) ⧸|= 𝑅·_*

M(𝑅) def
= {𝜃 ∈ Span | 𝜃 |= 𝑅}

𝐿 ≡ 𝑅
def
= M(𝐿) =M(𝑅)

Intuitively, (𝑢, 𝜖, 𝑠) |= (?=𝑅) means that there exists a match of 𝑅 starting from
the location (𝑢, 𝑠), and (𝑢, 𝜖, 𝑠) |= (?<=𝑅) means that there exists a match of 𝑅
ending in the location (𝑢, 𝑠). For all lookarounds, the matched span has always
0 width, i.e., lookarounds are a generalized form of anchors.

Observe that M(_*) = Span, M(⊥) = ∅, and all the Boolean connectives
satisfy the EBA conditions of ERE≤ . Thus, (Span,ERE≤ , |=,⊥, _*, |, &, ~) is an
EBA, since sp |= 𝑅 is decidable for all sp ∈ Span and 𝑅 ∈ ERE≤ because ⊨ is
decidable in A.

Transition Regexes. A transition regex is either a leaf 𝑅 ∈ EREï, or an ITE
expression ite(𝜓, 𝑓 , 𝑔) with condition 𝜓 ∈ A, then-case 𝑓 and an else-case 𝑔

that are transition regexes. The evaluation of 𝑓 for 𝑎 ∈ Σ, denoted by 𝑓 [𝑎], is
the leaf regex reached by 𝑎.

𝑅[𝑎] def
= 𝑅 ite(𝜓, 𝑓 , 𝑔) [𝑎] def

=

{
𝑓 [𝑎], if 𝑎 ⊨ 𝜓;
𝑔[𝑎], otherwise.

All binary operators ⋄ over regexes are lifted to transition regexes by propa-
gating the operations into the leaves. Unary operators such as ~ and (?=) are



propagated analogously. Here 𝑅 ∈ EREï.

𝑅 ⋄ ite(𝜓, 𝑓 , 𝑔) def
= ite(𝜓, 𝑅 ⋄ 𝑓 , 𝑅 ⋄ 𝑔) ite(𝜓, 𝑓 , 𝑔) ⋄ ℎ def

= ite(𝜓, 𝑓 ⋄ ℎ, 𝑔 ⋄ ℎ)

The set of leaves of a transition regex 𝑓 , denoted by Lvs( 𝑓 ), are the reachable
leaves of 𝑓 . In practice, transition regexes are kept clean [43] by construction,
but here we filter out unreachable leaves explicitly. So A is assumed decidable.

Lvs( 𝑓 ) def
= Lvs(_, 𝑓 ) Lvs(𝜓, 𝑅) def

=

{
{𝑅}, if SAT(𝜓);
∅, otherwise.

Lvs(𝜓, ite(𝛼, 𝑓 , 𝑔)) def
= Lvs(𝜓 ⊓ 𝛼, 𝑓 ) ∪ Lvs(𝜓 ⊓ 𝛼𝑐, 𝑔)

Symbolic Derivatives in ERE with Anchors. Here we define nullability
and symbolic derivatives for regexes 𝑅 ∈ EREï. A (symbolic) derivative of 𝑅

is either taken with respect to an initial (and nonfinal) location or a noninitial
(and nonfinal) location, final locations are not used for computing derivatives.
Nullability is defined for all locations.

We let the kind 𝜅 of a location 𝑥 be (IsInitial(𝑥), IsFinal(𝑥)) ∈ B×B. The three
main kinds are ini = (true, false), mid = (false, false), and fin = (false, true).
Using the definitions below we let Null (𝑅) def

= Nullmid (𝑅) and 𝛿 (𝑅) def
= 𝛿mid (𝑅).

Nullability. We define nullability Null 𝜅 (𝑅) of a regex 𝑅 ∈ EREï relative to a
location kind 𝜅 ∈ B × B. Let 𝑚 > 0 and recall that 𝑅{0} def

= 𝜀.

Null (initial,final) (\A) def
= initial

Null (initial,final) (\z) def
= final

Null 𝜅 (𝜀) def
= true

Null 𝜅 (𝑅*) def
= true

Null 𝜅 (𝜓) def
= false

Null 𝜅 (𝑅 | 𝑆) def
= Null 𝜅 (𝑅) ∨ Null 𝜅 (𝑆)

Null 𝜅 (𝑅 & 𝑆) def
= Null 𝜅 (𝑅) ∧ Null 𝜅 (𝑆)

Null 𝜅 (𝑅·𝑆) def
= Null 𝜅 (𝑅) ∧ Null 𝜅 (𝑆)

Null 𝜅 (𝑅{𝑚}) def
= Null 𝜅 (𝑅)

Null 𝜅 (~𝑅) def
= ¬Null 𝜅 (𝑅)

So Nullini (𝑅) is applied in locations of kind ini and Nullfin (𝑅) is applied in
locations of kind fin. The trivial special case of the single empty location (𝜖, 𝜖)
in an empty word 𝜖 that is both initial and final is omitted from discussions.

Symbolic Derivatives. Symbolic derivatives, represented by transition regexes,
are only evaluated for nonfinal locations, i.e., 𝜅 ∈ {ini,mid} below. We apply
the definition of derivatives from [48] and simultaneously lift the definition to
transition regexes, similar to [43]. Let 𝜓 ∈ A, 𝑚 > 0, and ï ∈ {\A, \z}.

𝛿𝜅 (ï) def
= ⊥

𝛿𝜅 (𝜀) def
= ⊥

𝛿𝜅 (𝑅 & 𝑆) def
= 𝛿𝜅 (𝑅) & 𝛿𝜅 (𝑆)

𝛿𝜅 (𝑅 | 𝑆) def
= 𝛿𝜅 (𝑅) | 𝛿𝜅 (𝑆)

𝛿𝜅 (~𝑅) def
= ~𝛿𝜅 (𝑅)

𝛿𝜅 (𝑅*) def
= 𝛿𝜅 (𝑅)·𝑅*

𝛿𝜅 (𝑅{𝑚}) def
= 𝛿𝜅 (𝑅)·𝑅{𝑚 − 1}

𝛿𝜅 (𝜓) def
= ite(𝜓, 𝜀 , ⊥)

𝛿𝜅 (𝑅·𝑆) def
=

{
𝛿𝜅 (𝑅)·𝑆 | 𝛿𝜅 (𝑆), ifNull 𝜅 (𝑅);
𝛿𝜅 (𝑅)·𝑆, otherwise.

Observe that, by definition, all regex operators are lifted to transition regexes.



4 Decision Procedures for ERE#

The focus of the paper in on the subclass ERE# of ERE≤ that contains EREï

combined with a restricted fragment of lookarounds. In the formal definition
below 𝐿 defines EREï, and 𝑅 defines ERE#. Let 𝜓 ∈ A and 𝑚 > 0.

𝐿 ::= 𝜓 | 𝜀 | \A | \z | 𝐿1|𝐿2 | 𝐿1&𝐿2 | 𝐿1·𝐿2 | 𝐿{𝑚} | 𝐿* | ~𝐿
𝑅 ::= 𝐿 | (?<=𝐿)·𝑅 | (?<!𝐿)·𝑅 | 𝑅·(?=𝐿) | 𝑅·(?!𝐿) | 𝑅1|𝑅2 | 𝑅1&𝑅2 | ~𝑅

We show below that all regexes in ERE# have a normal form that is a union of
core regexes that are regexes of the form (?<=𝐿1)·𝐿2·(?=𝐿3) where 𝐿𝑖 ∈ EREï,
with 𝐿2, (?<=𝐿1)·𝐿2, 𝐿2·(?=𝐿3) as special cases because (?<=𝜀) ≡ (?=𝜀) ≡ 𝜀.
The definition of ERE# properly subsumes the definition of RE# in [46] where
RE# contains all core regexes and is only closed under &.

The match semantics of ERE# is based on ERE≤ . In particular, it follows
that (Span,ERE#, |=,⊥, _*, |, &, ~) is an EBA. The main decision procedures we
are focusing on for ERE# are emptiness, subsumption, and equivalence.

4.1 Deciding Nonemptiness of Core Regexes in ERE#

Here we consider nonemptiness of core regexes in ERE#. We later show how the
general case of nonemptiness of all regexes in ERE# reduces to nonemptiness of
core regexes by showing that ERE# is a decidable EBA. The nonemptiness algo-
rithm builds on symbolic derivatives and transition terms and can be abstractly
formulated as a fixpoint procedure that relies on the associativity, commutativ-
ity, and idempotence (ACI) of regex union, which guarantees finiteness of the
state space and thus termination.

For a union regex let Set(𝑅1|𝑅2) def
= Set(𝑅1) ∪ Set(𝑅2). Let Set(⊥) def

= ∅ and
for all other regexes 𝑅 let Set(𝑅) def

= {𝑅}. Let 𝑓 be a transition regex. The set of
all states of 𝑓 is the set of all 𝑞 ∈ Set(ℓ) for ℓ ∈ Lvs( 𝑓 ), i.e.,

States( 𝑓 ) def
=

⋃
ℓ∈Lvs( 𝑓 ) Set(ℓ)

For all 𝑅 = (?<=𝐿1)·𝐿2·(?=𝐿3) ∈ ERE#, where 𝐿𝑖 ∈ EREï, we decide nonempti-
ness of 𝑅 by reducing it to nonemptiness in EREï as follows.

IsNonempty((?<=𝐿1)·𝐿2·(?=𝐿3)) def
= IsNonempty(_*·𝐿1·𝐿2·𝐿3·_*)

Let 𝐿 ∈ EREï. The function IsNonempty(𝐿), unless 𝐿 is trivially nullable, com-
putes reachable states from 𝐿 and returns true upon reaching a nullable state.

IsNonempty(𝐿) def
= if Null (true,true) (𝐿) ∨ Nullini (𝐿) return true

𝜌(𝐿) ← 𝛿ini (𝐿); 𝑄 ← {𝐿} ∪ States(𝜌(𝐿))
while � 𝑞 ∈ 𝑄 : (Null(𝑞) ∨ Nullfin (𝑞)) ∧ ∃ 𝑞 ∈ 𝑄 \Dom(𝜌) do

𝜌(𝑞) ← 𝛿 (𝑞); 𝑄 ← 𝑄 ∪ States(𝜌(𝑞))
return ∃ 𝑞 ∈ 𝑄 : Null(𝑞) ∨ Nullfin (𝑞)



not-elim
~((?<=𝑋)𝑌(?=𝑍))
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(?<=𝑋)(?<=𝑋′)(𝑌&𝑌 ′)(?=𝑍)(?=𝑍 ′)

Fig. 3: Main inference rules in ERE≤ used in Theorem 2. Let not-elim# =

not-elim◦nlb-elim◦nla-elim, and and-elim# = and-elim◦lb-join◦la-join.

Example 1. Let 𝑅 := (?<=\A)𝜀(?=~\z). Then Nullini (_*\A~\z_*) = true. Here
𝑅 only matches spans of 0 width whose start location is initial and end location
in nonfinal, i.e., M(𝑅) = {(𝜖, 𝜖 , 𝑣) | 𝑣 ∈ Σ+}.

Let 𝑅 := (?<=\A)_(?=\z). Then 𝐿 = _*\A_\z_* and 𝜌(𝐿) = 𝐿|\z_*. So
initially 𝑄 = {𝐿, \z_*} because States(𝐿|\z_*) = {𝐿, \z_*} and we have that
Nullfin (\z_*) = true. Note that M(𝑅) = {(𝜀, 𝑎, 𝜀) | 𝑎 ∈ Σ}. ⊠

Theorem 1 (NonEmptiness) M(𝑅) ≠ ∅⇔ IsNonempty(𝑅) holds for all core
regexes 𝑅 in ERE#.

IsNonempty(𝑅) can be extended to produce a witness when true. In most precise
form, the produced witness can be in form of a symbolic span (𝜶1,𝜶2,𝜶3) ∈
A∗ ×A∗ ×A∗ such that, for all spans (𝑢1, 𝑢2, 𝑢3), such that 𝑢𝚤 ⊨ 𝜶𝚤, it holds that
(𝑢1, 𝑢2, 𝑢3) |= 𝑅, where (𝑎𝑖)𝑖<𝑛 ⊨ (𝜓𝑖)𝑖<𝑚 stands for 𝑛 = 𝑚 and

∧
𝑖<𝑛 (𝑎𝑖 ⊨ 𝜓𝑖).

4.2 Lookaround Normal Form of ERE#

We start by providing a collection of equivalence preserving inference rules in
ERE≤ , see Figure 3, that are used to rewrite regexes in ERE# into the desired
normal form. All rules have been formalized and proved correct in Lean. Observe
that all rules preserve ERE#, i.e., lookaround bodies remain in EREï.

The key new rule is not-elim. The other rules involving lookarounds are
derived from similar rewrites in [46] where the normal form is linear in the size
of the original RE# formula. In the case of ERE# the lookaround normal form
can be exponential in the size of the original formula.

Let 𝑅 be a Boolean combination of core regexes. We define the negation
normal form NNF(𝑅) of 𝑅 where regex complement ~ has been propagated via
de Morgan extended with the rule not-elim#. It follows that no subregex of
NNF(𝑅) outside EREï is negated and all lookarounds are positive.

Many further simplification laws are used as rewrites. The basic ones are
treating (_*,⊥) as the units of (&,|) and as the zeros of (|,&), and ⊥ is also the
zero of · and 𝜀 is the unit of ·. Further rules include (?<!𝜀) ≡ ⊥ and (?!𝜀) ≡ ⊥,
as well as (?=⊥) ≡ ⊥ and (?<=⊥) ≡ ⊥. Also, _*\A ≡ \A and \z_* ≡ \z.

Further practical rewrites for negative lookarounds with body 𝜓 ∈ A are
(?<!𝜓) ≡ (?<=𝜓𝑐|\A) and (?!𝜓) ≡ (?=𝜓𝑐|\z) as equivalent but simplified
variants of nlb-elim and nla-elim, respectively.



Example 2. The regex (?!abc\z) is intuitive, it states that the suffix of a match
must not be abc. So (?=~(abc\z)\z) is equivalent but less intuitive.

To illustrate some rules, consider ~((?<=a)_*b_*|_*c_*) in ERE#. Here we also
make use of ~(_*b_*)≡ [^b]* and ~(_*c_*)≡ [^c]*, as well as [^b]*&[^c]*≡
[^bc]* (using standard negated character class notation).

~((?<=a)_*b_*|_*c_*)
deMorgan≡ ~((?<=a)_*b_*)&~(_*c_*)
not-elim≡ ((?<!a)_*|~(_*b_*))&~(_*c_*)
nlb-elim≡ ((?<=[^a]|\A)_*|~(_*b_*))&~(_*c_*)

≡ ((?<=[^a]|\A)_*|[^b]*)&[^c]*

≡ (?<!a)[^c]*|[^bc]*

For example, (𝜀, b, 𝜀) |= (?<!a)[^c]* but (𝜀, b, 𝜀) ⧸|= (?<=a)_*b_*|_*c_*. ⊠

4.3 Formalization in Lean

We now present the key result that establishes the correctness of the Lookaround
Normal Form (LNF). Our approach follows the formalization presented in [50],
which defines the match semantics for the entire class of regular expressions
ERE≤ . In this work, we explicitly handle three distinct types of match seman-
tics, each corresponding to different subclasses of regular expressions: EREï,
ERE#, and ERE≤ , and establish their relationships to ensure correct correspon-
dence between their semantics. Additionally, we introduce an internal conversion
between the RESharp type and its positive fragment, PosRESharp, which excludes
complements and negative lookarounds.

First, we present some auxiliary definitions. The central definition in our
formalization is the lnf function, which converts a regex in ERE# into a list of
core regexes. The normalization function LNF in Theorem 2 is defined in terms of
lnf. The lnf function is defined inductively and implements the inference rules
presented in Figure 3. Components such as la join, lb join, and intersection

closely follow the corresponding rules.
The lnf function definition, returning a list of core regexes, is as follows.4

def lnf (r : RESharp A) : List (CoreRegex A) :=

match r with

| Ere r => [EREa to CoreRegex r]

| Lookahead r la => map (la join la) (lnf r)

| Lookbehind lb r => map (lb join lb) (lnf r)

| NLookahead r la => map (la join (nLookahead la)) (lnf r)

| NLookbehind lb r => map (lb join (nLookbehind lb)) (lnf r)

| Alt l r => lnf l ++ lnf r

| Inter l r => productWith intersection (lnf l) (lnf r)

| Compl r => takeNegations (lnf r)

4 The full Lean formalization is available in the supplemental material.



The most intricate case involves the complement operation. To handle this
case more easily and to simplify the proof structure, we introduce an auxiliary
function, takeNegations, that specifically deals with negated expressions.

def takeNegations (rs : List (CoreRegex A)) : List (CoreRegex A) :=

match rs with

| [] => [EREa to CoreRegex *]

| c :: cs => let cs’ := takeNegations cs

map (.lb join (nLookbehind c.left)) cs’ ++

map (.la join (nLookahead c.right)) cs’ ++

map (intersection (EREa to CoreRegex (~c.regex))) cs’

Intuitively, the three lists correspond to the inference rule not-elim where
any of the three components of the union can be satisfied in order to satisfy the
negation of the whole expression.

Let us give the remaining definition, LNF, in the Theorem 2.

def LNF (r : RESharp A) : RESharp A := re sum pos (map sem (lnf r))

It first transforms the input regex into its Lookaround Normal Form (LNF)
using the lnf function. Then, it applies the sem function to each core regex in the
LNF list, converting them into their corresponding ERE# representation e.g., the
core regex (𝐿1, 𝐿2, 𝐿3) is converted into (?<=𝐿1)·𝐿2·(?=𝐿3). Finally, re sum pos

combines the resulting list of ERE# expressions with the union operator.
Finally, we are ready to state the main theorem where RESharp denotes ERE#.

Theorem 2 (LNF)
theorem lnf correct {R : RESharp A} {sp : Span Σ} : sp |= R ↔ sp |= LNF R

Theorem 2 states that the match semantics of a regex 𝑅 remains unchanged
when it is transformed into its equivalent Lookaround Normal Form (LNF). In
other words, converting a regex into LNF preserves its matching behavior. The
proof proceeds by induction on 𝑅, where we demonstrate that the normalization
function behaves as expected for each case.

Theorem 3 (Decidability) If A is decidable then so is ERE# modulo A.

Proof. Let 𝑅 ∈ ERE#. Then M(𝑅) ≠ ∅ ⇔ ∃ 𝑆 ∈ LNF (𝑅) : M(𝑆) ≠ ∅ holds
by Theorem 2 and M(𝑆) ≠ ∅ ⇔ IsNonempty(𝑆) holds by Theorem 1, where
IsNonempty(𝑆) uses cleaning which requires A to be decidable. ⊠

Decidability of RE extended with arbitrary lookaheads has been shown in [8].
Note that ERE# supports a restricted form of lookaheads, e.g., nested lookaheads
are not supported and ERE# is not closed under concatenation. On the other
hand, ERE# supports also restricted lookbehinds and is closed under reversal.
Although we have provided a decision procedure for ERE#, an efficient symbolic
decision procedure for the full class ERE≤ remains an open problem.



4.4 Subsumption and Equivalence in ERE#

Let 𝑅, 𝑆 ∈ ERE#. Then 𝑆 subsumes 𝑅 or 𝑅 is subsumed by 𝑆, denoted by 𝑅 ⊑ 𝑆

means that M(𝑅) ⊆ M(𝑆). Subsumption is equivalent to emptiness of 𝑅 & ~𝑆,
since M(𝑅 & ~𝑆) = ∅⇔M(𝑅) \ M(𝑆) = ∅⇔M(𝑅) ⊆ M(𝑆).

One can also consider various language semantics of 𝑅 such as word (M(𝑅))
and match (M(𝑅)) and related equivalence relations. In general, those are weaker
than ≡. E.g., M((?<=\Aa\z)) = {(a, 𝜀, 𝜀)} and M((?=\Aa\z)) = {(𝜀, 𝜀, a)}
while the word language is {a} and the match language is {𝜀} in both cases. The
important special case is for regexes \A𝑅\z whose language match (M(\A𝑅\z))
corresponds exactly to M(\A𝑅\z).

One method to decide equivalence 𝑅 ≡ 𝑆 is to decide that both 𝑅 ⊑ 𝑆 and
𝑆 ⊑ 𝑅 hold, that is emptiness of 𝑅 & ~𝑆 | 𝑆 & ~𝑅. A different method is to use an
additional Boolean operator for symmetric difference (XOR) ⊕ whose derivative
rule in EREï would remain the same as for all the other binary operators:

𝛿𝜅 (𝑅 ⊕ 𝑆) = 𝛿𝜅 (𝑅) ⊕ 𝛿𝜅 (𝑆) Null 𝜅 (𝑅 ⊕ 𝑆) def
= (Null 𝜅 (𝑅) ≠ Null 𝜅 (𝑆))

Thus, IsNonempty(𝑅⊕𝑆) ⇔ 𝑅 . 𝑆. While this works for 𝑅, 𝑆 ∈ EREï, it is
unclear if this method generalizes to the whole ERE# in a “useful” manner,
since LNF (𝑅⊕𝑆) would have to break the problem into separate disjuncts. The
⊕ operator also has a dual XNOR operator ⊙ so that ~(𝑅⊕𝑆) ≡ ~𝑅⊙~𝑆:

𝛿𝜅 (𝑅 ⊙ 𝑆) = 𝛿𝜅 (𝑅) ⊙ 𝛿𝜅 (𝑆) Null 𝜅 (𝑅 ⊙ 𝑆) def
= (Null 𝜅 (𝑅) = Null 𝜅 (𝑆))

So ⊕ and ⊙ can be used like any other binary operator in any regex.

Example 3. Given the regex 𝑞0 = \A([ab]+&~(_*aa_*))\z and the regex 𝑟0 =

\A(a(b+a?)*|b(a?(\z|b+))*)\z, we consider their equivalence. Both regexes
match all strings in [ab]+ without aa as a substring. While 𝑞0 is quite transpar-
ent in this regard, 𝑟0 is less clear but avoids & and ~. We prove their equivalence
below, by using ⊕. We first describe their symbolic derivatives and resulting
(symbolic) DFAs separately, as illustrated in Figure 4. For example, for the
regex 𝑞0 we get that 𝛿ini (𝑞0) = ite(a, 𝑞2, ite(b, 𝑞1, ⊥)) = 𝛿 (𝑞1), and for the regex
𝑟0 we get that 𝛿ini (𝑟0) = ite(a, 𝑟1, ite(b, 𝑟2, ⊥)) and 𝛿 (𝑟1) = ite(b, 𝑟3, ⊥), etc.,
where the leaf regexes are shown as states in Figures 4a and 4b. Now, returning
to equivalence, the DFA for 𝑟0 ⊕ 𝑞0 looks similar to Figure 4b, e.g.,

𝛿ini (𝑟0 ⊕ 𝑞0) = ite(a, 𝑞2, ite(b, 𝑞1, ⊥)) ⊕ ite(a, 𝑟1, ite(b, 𝑟2, ⊥))
≡ ite(a, 𝑞2⊕𝑟1, ite(b, 𝑞1⊕𝑟2, ⊥))

except that the DFA has no accepting states. E.g., Nullfin (𝑞2⊕𝑟1) = false because
both 𝑞2 and 𝑟1 are nullable, similarly for all the other states. Thus 𝑟0 ≡ 𝑞0. ⊠

An algorithm for regex equivalence based on ⊕ would not need to construct a
complete DFA for ⊕, in particular when a witness of inequivalence is not needed.
Such an algorithm is ongoing work that falls outside the scope of this paper.
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Fig. 4: 𝑞0=\A([ab]+&~(_*aa_*))\z and 𝑟0=\A(a(b+a?)*|b(a?(\z|b+))*)\z.
The sink state ⊥ is implicit – from each state 𝑠 there is a symbolic transition to
the sink state for all the other characters, e.g., 𝛿 (𝑞1) [c] = ⊥ and 𝛿 (𝑟1) [a] = ⊥.

5 Implementation

Our implementation of the decision procedures is done in the Rust programming
language. The implementation is available on GitHub [45]. It supports a subset
of the Unicode Strings theory in SMT-LIB [13], with a parser that converts smt2
format into our internal representation of regexes.

All the supported operations are implemented as operations on ERE#, and
we support all the RegLan operations in the SMT-LIB standard. Operations
that can not be represented as regexes in a straightforward manner such as
str.replace are considered out of scope, as well as operations on a higher level
of abstraction, such as the loop R{𝑛}, where 𝑛 is not a constant. In the formal
semantics, the regex 𝑅{𝑚, 𝑛}, where 0 < 𝑚 ≤ 𝑛, stands for 𝑅{𝑚}·(𝑅|𝜀){𝑛−𝑚}.

The operations supported in the implementation include the following.

– All operations starting with re. on constants or other regexes, such as re.++,
re.union, re.*, etc.

– ERE membership str.in re on variables and constants
– String assertions that translate intuitively into ERE, such as:

str.len 𝑥 < 5

_{0,4}
str.prefixof "abc" 𝑥

abc_*

str.contains "abc" 𝑥

_*abc_*

– Boolean operations such as and, or, not on any of the above, e.g.,
(str.len 𝑥 > 3) and (str.len 𝑥 < 9)

_{4,}&_{0,8} (≡ _{4,8})
– Standard conversions and utilities such as str.to int, str.to re, str.++

5.1 Representation of Regexes

In the implementation, each regex is represented as a tree structure of nodes,
where each node has:

1. a unique identifier (unsigned 32-bit integer)
2. a kind specifier (e.g., predicate, union, concatenation, etc.)
3. the unique identifiers of the left and right child (or 0 if missing)
4. various additional information (e.g., bit-flags, and relevant character set)



Data stored as additional information includes a compact integer encoding
of a predicate 𝜑𝑟 for each node 𝑟 that approximates the relevant characters in
𝑟, as defined in [46, Section 5.3] with related rewrites. Additionally, 𝑟 maintains
several bit-flags that can be inferred during construction, such as whether the
language contains the empty string (i.e., 𝑟 is nullable), the presence of anchors
in 𝑟, or whether 𝑟 contains extended operations such as & or ~.

When working with UTF8 representation, the character EBA A is over bytes
as Σ. The representation of valid UTF8 strings is the regex 𝑅UTF8:

([\x00-\x7F]|[\xC0-\xDF]𝛽|[\xE0-\xEF]𝛽{2}|[\xF0-\xF7]𝛽{3})*

where 𝛽 = [\x80-\xBF] is the continuation byte predicate. When working with
any regex 𝑅 ∈ EREï, the intersection 𝑅 & \A𝑅UTF8\z restricts the accepted word
language to L(𝑅UTF8) that is a proper subset of Σ∗.

The predicates 𝜓 in A are represented as 256-bit bit-vectors, allowing for
efficient constant-time Boolean operations. Each 𝑖 ∈ Σ corresponds to the 𝑖’th
bit of 𝜓. A has trivial checks for 𝜓≡⊥ and for 𝜓≡_ since ⊥ = 0 and _ = 2256−1.

To accelerate the bit-vector operations further, we perform the operations in
parallel over the 64-bit integers using Single Instruction Multiple Data (SIMD)
instructions available in modern CPUs, e.g., AVX2 or SSE4.2.

We assign a unique identifier to each predicate, allowing us to represent
the predicate of a node as a 32-bit integer instead of a 256-bit bit-vector. This
reduces the maximum number of unique predicates in a given regex to 232, but
in practice this is a reasonable trade-off, as it is very unlikely that a regex would
contain more than a thousand unique character sets, let alone 232.

The identifier of the node represents the syntactic structure of the regex, and
is used to memoize the results of the operations on the regexes. The integers are
assigned sequentially during construction, for example, the regex (a|b) would
be assigned the integer 3, and point to the corresponding leaf nodes 1 and 2,
representing the characters a and b respectively. To prevent duplicate identifiers,
we use a hash map to store the regexes that have been constructed so far.

While not strictly relevant to the theory, we also have several rules for normal-
ization, such as always having the left child of a union or intersection operation
be the smaller identifier. Thus, the regexes (a|b) and (b|a) would be normal-
ized to the same regex, which ever is constructed first. We also enforce that
concatenations can only contain inner concatenations on the right to prevent
ambiguous nesting. Together, these rules ensure that the syntactic construction
of the regex is unique up to commutativity and associativity, but this does not
prevent the construction of equivalent regexes in terms of the language they
represent. For example, (𝜀|b){50} and (b{0,25}){2} represent the same lan-
guage, but are constructed as different regexes – to detect equivalence between
such examples, we would need to use the equivalence decision procedure.

5.2 Rewrite Rules and Simplifications

An important part of the implementation is the simplification and memoization
of regexes during construction. The simplifications are applied bottom-up, i.e.,
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Fig. 5: Main rewrite rules at the level of match semantics.

when a regex is constructed, the children of the regex are already simplified. The
simplifications are based on the rules in [46], but in a more general way, as, in
addition to the algebraic rules, we can perform language-level operations on the
regexes directly.

For example, the regex _*a_*b_*|_*b_* would be simplified to _*b_* during
construction, as the left branch of the union is subsumed by the right branch. In
other words, the language of _*a_*b_* is a subset of the language of _*b_*. Sub-
sumption plays a crucial role in the construction of intersections and unions, as
it allows us to prevent construction of redundant definitions, often considerably
reducing the size of the regex.

We can also check satisfiability of a regex during construction, which allows
us to rewrite unsatisfiable regexes to ⊥, which represents the empty language.

For the key rewrite rules on the match semantics level, which are used in the
implementation, see Figure 5.

Performing these operations during construction gives us a very important
property for optimization, which is that any remaining regex after construction
is either ⊥ or satisfiable. This allows us to skip many unnecessary satisfiability
checks during the decision procedure.

This satisfiability check (leftmost rule in Figure 5) only needs to be performed
when constructing a concatenation with an anchor, an intersection, or comple-
ment, as these operations can result in an unsatisfiable regex, given that the
children of the operation are satisfiable. The other operations will always result
in a satisfiable regex, which we propagate as bit-flags in the implementation.

While the construction of a concatenation node with a satisfiable node and
an anchor may result in an unsatisfiable regex, this satisfiability check takes
constant time, as it only requires to check whether the language of the other child
of the concatenation contains the empty string, which is already known as a bit-
flag during construction. For example, the regex b\A is trivially unsatisfiable,
and rewritten to ⊥, as the language of b does not contain the empty string,
therefore the anchor \A cannot be at the beginning. Similarly, the regex \zb is
rewritten to ⊥, as the language of b does not contain the empty string, therefore
the anchor \z cannot be at the end.

The second rule in Figure 5 provides a more efficient way to check for sat-
isfiability of the complement operation, as the only unsatisfiable complement is
~(_*). This means that we can check that a complement is satisfiable by ensuring
that the complement body is not equivalent to _*, effectively searching for the
existence of a non-accepting state in the body of the complement. While it is not
more efficient asymptotically, it is slightly more efficient memory-wise, as we do
not need to construct derivatives of the (outer) complement node itself. Often,



in practice, such non-accepting state is the very state we start from, skipping
the check entirely.

In the solver implementation, we do not perform the satisfiability check for
the intersection operation eagerly, as the tasks often consist of many intersec-
tions, and proving nonemptiness of a subset of intersections does not necessarily
help us in proving nonemptiness of all the intersections combined. Instead, we
label each regex with a bit-flag, that indicates whether the regex contains an
intersection, and only perform the satisfiability check when requested. If the flag
is missing, we can be sure that the regex is already known to be satisfiable.

The solver also includes several variants of rewrite rules that are applied to
bounded loops. In particular, it uses the loop rule and the predicate subsumption
rule from [46, Figure 6]. To summarize, the majority of time spent in the solver
is proving nonemptiness of intersection, which is done lazily, while the rest of
the operations are performed eagerly during construction.

6 Evaluation

The evaluation is based on existing SMT benchmarks. All regular expressions
supported in SMT belong to the class ERE and therefore do not support anchors,
i.e., in terms of EREï 𝑅 can be treated as \A𝑅\z. For language semantics in
EREï, anchors can also be systematically eliminated through preprocessing. We
did not use such preprocessing here, because our evaluation did not require it.

We have collected a set of SMT benchmarks for regexes. The benchmarks
consist of approximately 20 000 SMT-LIB files, which are a mix of satisfiability
problems for regexes, such as equivalence, subsumption, and membership queries.
The benchmarks include AutomatArk [21], Denghang and Sygus-qgen bench-
mark sets from the QF S and QF SLIA categories of the SMT-LIB [6] repository,
as well as additional benchmarks from the repository [42] designed specifically
around difficult regular expression problems.

We compared our implementation (ERE#-solver) with the following state-
of-the-art tools: cvc5 [5], Z3 [49], Z3str3 [10] , Z3str4 [36] , Z3alpha [34] , OS-
TRICH [17], OSTRICH𝑅𝐸𝐶𝐿 [27,28] and Z3-Noodler [19]. The benchmark re-
sults (when solved) are identical between ERE#-solver, cvc5, Z3 and Z3-Noodler.
There are discrepancies in the results of some solvers that we have not yet in-
vestigated. Table 1 shows the number of unsolved problems for each benchmark
category.

Our solver is a specialized tool for regex constraint solving and analysis,
rather than a general purpose SMT solver. As a result, it only supports a subset
of the SMT operations that the other tools support. Nevertheless, for the regex
benchmarks, our solver consistently outperforms the other tools, see Figure 1 in
the introduction for the cactus plot of the time taken to solve the benchmarks,
and Table 1 for the number of unsolved benchmarks.

For our solver, under 100 of the benchmarks took more than 0.01s to solve,
and none of the benchmarks took more than 0.1s to solve. Many individual
benchmarks take very little time to solve for other solvers as well, e.g., cvc5



Table 1: Unsolved problems by solver in the various benchmark categories, where
min and max are highlighted in color. Timeout for each problem is 6s.

Syg Denghang AutArk Bool Date Blowup Passwd Mem Int Sub State
∑

Included 343 999 15995 21 19 14 34 1907 55 100 22 19509
ERE#-solver 0 0 0 0 0 0 0 0 0 0 0 0
Z3-Noodler 0 1 41 0 0 0 0 0 0 0 0 42
OSTRICH 0 0 75 0 0 0 1 1 2 3 0 82

OSTR𝑅𝐸𝐶𝐿 0 26 76 0 0 0 0 1 1 3 1 108
cvc5 1 26 152 2 3 1 7 3 27 28 0 250
Z3 0 124 322 1 0 2 16 2 20 9 8 504
Z3alpha 0 126 210 1 0 3 18 1537 55 99 8 2057
Z3str4 0 3 58 1 5 1 17 1907 55 100 6 2153
Z3str3 37 773 5353 1 14 0 20 129 21 26 7 6381

solves thousands of the benchmarks in less than 0.01s, and is generally closest
to the time of our solver in Figure 1. The high lower-bound of the time taken
for OSTRICH is likely due to a cold start of the process, as it is a Java-based
tool, but in terms of the number of benchmarks solved, it is the third best tool
after our solver and Z3-Noodler. The key factors contributing to our solver’s
significant performance improvement are discussed in the following section.

Performance Analysis. The key differences between our solver and others are
in the way in which we represent and solve the problem:

– Our solver contains the problem fully within the regex theory, and does not
need to convert any part of the problem to a different theory, such as linear
arithmetic. Several other solvers solve regex problems with a combination of
regex and linear arithmetic, e.g., encoding length constraints [19].

– Our solver never constructs an automaton for the regex, neither as a DFA
nor as an NFA. Instead, it performs the operations symbolically, and the
nonemptiness check is done through lazy unfolding of the problem encoded
in our regex theory. This is in contrast to many other solvers, which construct
an automaton for the regex and perform operations on the automaton.

– Our solver explores language complement lazily through derivatives, which is
not done in other derivative-based string solvers such as cvc5. Complement
is often the bottleneck in equivalence and subsumption checks.

The time required for checking nonemptiness of a regex is proportional to
the number of derivatives constructed, where each derivative is a deterministic
memoized operation that is cached upon the first computation. This reduces the
amount of work done to the number of unique derivatives reached.

SMT benchmarks for regexes typically fall into two categories: they are either
solved within a few milliseconds or remain unsolved due to excessive memory
consumption, often caused by an exponential blowup in automaton size. How-
ever, our tool avoids the explicit automaton construction, which mitigates the
memory usage and allows us to solve many of the benchmarks that other tools
fail to solve.



Table 2: Effect of lazy depth-first search on satisfiable problems
Satisfiability Problem DFS derivatives BFS derivatives

(_*a_*){25}&(_*b_*){25}& {0,50} 120 6749
(_*a_*){50}&(_*b_*){50}& {0,100} 245 47874
(_*a_*){100}&(_*b_*){100}& {0,200} 495 358249

It is important to note that even the lazy graphs constructed by unwinding
the problem can grow exponentially in size, and we have to perform simplifi-
cations whenever possible to reduce the effect of such blowup. It is done by
rewriting the regexes, both algebraically and on the language level, as described
in Section 4.1.

Many benchmarks are specifically designed to expose the exponential blowup.
However, they can be solved almost immediately by performing certain simplifi-
cations and short-circuiting. In the following we explain the simplifications and
their effect on the benchmarks in more detail.

State Space Considerations. Although the graphs can grow exponentially in
size, our solver has several optimizations to mitigate blowup. In many practical
cases where other solvers run out of memory, our heuristics enable us to solve
the problems much more efficiently. Here we highlight some key optimizations
and heuristics demonstrated on problems from the set of collected benchmarks.

Many benchmarks where solvers run out of memory involve the use of large
quantifiers, such as str.len x > 1000 or re.loop 100 100. These come with
an enormous growth of state space, but as we do not construct an automaton,
and are not looking for the shortest solution, a depth-first traversal of the state
graph is sufficient. Table 2 shows the impact of the approach on satisfiable bench-
marks with large quantifiers. The benchmarks are measured by the number of
derivatives constructed to reach a solution, with depth-first search significantly
outperforming breadth-first search. E.g., depth-first search solves the last bench-
mark in Table 2 with 495 derivatives in less than 0.002s, including parsing and
pre-processing the problem itself, while breadth-first search takes about 0.725s.

While it has an impressive effect on satisfiable problems with a large number
of possible solutions, it brings limited advantage for unsatisfiable benchmarks,
as search has to exhaust all possibilities before concluding that the regex is un-
satisfiable. For unsatisfiable problems, early elimination of trivially unsatisfiable
regexes is crucial, as it can reduce search time by several orders of magnitude.

A key simplification for unsatisfiable problems is to prioritize checking length
constraints of intersections, as this can be done without taking derivatives and
will often eliminate the need for further search.

For example, the regex _{4000,5000}&_{8000,9000} can be rewritten to ⊥
in constant time, as there is no overlap between the minimum and maximum
lengths of the two. If there is an overlap, the regex can be rewritten to the
intersection of the two length constraints, as was shown in Section 5.



Table 3: Effect of solving unsat suffix problems in reverse
Satisfiability Problem Rev. derivatives Fwd. derivatives

_*b_{10}&_*a_{10}& {10,}abc_{10,} 9 279
_*b_{20}&_*a_{20}& {20,}abc_{20,} 19 11 833
_*b_{30}&_*a_{30}& {30,}abc_{30,} 29 539 145
_*b_{40}&_*a_{40}& {40,}abc_{40,} 39 5 000 000+

Another important heuristic is checking the emptiness of a regex in reverse. It
is particularly useful for addressing a common pathological case where large state
space is combined with an unsatisfiable suffix. For example, the satisfiability
of the regex _*b_{100}&_*a_{100} can be checked for emptiness by reversing
the regex to _{100}b_*&_{100}a_* and checking it for emptiness. The reversed
approach simplifies the problem significantly, as illustrated in Table 3.

7 Proposal for SMT-LIB

We believe that a conservative extension of SMT-LIB to support RegLan = ERE≤
would be noncontroversial. For positive and negative lookaheads, positive and
negative lookbehinds, and span membership or matching the minimal extension
could be as follows where the start anchor re.A and the end anchor re.z could
be included as regex constants for convenience:

(re.lb 𝑟)
def
= (?<=𝑟) (re.nlb 𝑟)

def
= (?<!𝑟) re.A

def
= (re.nlb re.allchar)

(re.la 𝑟)
def
= (?=𝑟) (re.nla 𝑟)

def
= (?!𝑟) re.z

def
= (re.nla re.allchar)

(str.matches 𝑢 𝑣 𝑠 𝑟)
def
= (𝑢, 𝑣, 𝑠) |= 𝑟

Regarding compatibility with ERE, (str.in re 𝑣 𝑟) fully retains its original
interpretation for 𝑟 ∈ ERE. It follows by easy induction over 𝑟 ∈ ERE that
∀𝑢, 𝑣, 𝑠 : (𝑢, 𝑣, 𝑠) |= 𝑟 ⇔ 𝑣 ∈ L(𝑟), i.e., 𝑣 ∈ match (M(𝑟)) ⇔ 𝑣 ∈ L(𝑟). Thus,
∀𝑢, 𝑣, 𝑠 ∈ String, 𝑟 ∈ ERE : (str.matches 𝑢 𝑣 𝑠 𝑟) ⇔ (str.in re 𝑣 𝑟)

Using lookarounds, one can support other standard anchors such as the line an-
chors ^ and $ and the wordborder anchor \b as (?<!\w)(?=\w)|(?<=\w)(?!\w).
One can also express different match semantics like POSIX match semantics of
𝑤 = 𝑢𝑣𝑠 ∧ (𝑢, 𝑣, 𝑠) |= 𝑟, where |𝑢 | is minimal and |𝑣 | maximal for |𝑢 | – the leftmost
longest match in 𝑤 – as an SMT optimization problem.

It is also practical to support ⊕, say re.xor, and ⊙, say re.xnor, natively, in
order to avoid their indirect encodings in various algorithms, such as equivalence
checking, since 𝑟1 ≡ 𝑟2 ⇔ 𝑟1⊕𝑟2 ≡ ⊥. Moreover, reversal of sequences and regexes
is beneficial, as illustrated above. In particular, (𝑢, 𝑣, 𝑠) |= 𝑟 ⇔ (𝑠r, 𝑣r, 𝑢r) |= 𝑟r.
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ing string constraints with lengths by stabilization. Proc. ACM Program. Lang.
7(OOPSLA2), 2112–2141 (2023), https://doi.org/10.1145/3622872
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