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Symbolic automata are finite state automata that support potentially infinite alphabets, such as the set of

rational numbers, generally applied to regular expressions and languages over finite words. In symbolic

automata (or automata modulo A), an alphabet is represented by an effective Boolean algebra A, supported

by a decision procedure for satisfiability. Regular languages over infinite words (so called 𝜔-regular languages)

have a rich history paralleling that of regular languages over finite words, with well known applications to

model checking via Büchi automata and temporal logics.

We generalize symbolic automata to support 𝜔-regular languages via transition terms and symbolic deriva-
tives, bringing together a variety of classic automata and logics in a unified framework that provides all the

necessary ingredients to support symbolic model checking modulo A. In particular, we define: (1) alternating

Büchi automata modulo A (ABWA ) as well (non-alternating) nondeterministic Büchi automata modulo A
(NBWA ); (2) an alternation elimination algorithm Æ that incrementally constructs an NBWA from an ABWA ,
and can also be used for constructing the product of two NBWA ; (3) a definition of linear temporal logic

modulo A, LTL⟨A⟩, that generalizes Vardi’s construction of alternating Büchi automata from LTL, using (2)

to go from LTL modulo A to NBWA via ABWA .
Finally, we present RLTL⟨A⟩, a combination of LTL⟨A⟩ with extended regular expressions moduloA that

generalizes the Property Specification Language (PSL). Our combination allows regex complement, that is not
supported in PSL but can be supported naturally by using transition terms. We formalize the semantics of

RLTL⟨A⟩ using the Lean proof assistant and formally establish correctness of the main derivation theorem.
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1 Introduction
Classical finite automata, which correspond to regular expressions and regular languages, are finite

in three orthogonal dimensions:
✓ the number of states in the automata, which make it a finite (or finite-state) automata;
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✓ the number of alphabet elements that induce state transitions;
✓ the length of the words (a sequence of alphabet elements) recognized by the automata.

Symbolic automata [D’Antoni and Veanes 2021] are finite state automata that support potentially

infinite alphabets, such as the set of rational numbers. The transitions of symbolic automata are

labeled with predicates from an effective Boolean algebra (EBA)A. Each atomic predicate and their

Boolean combination in A can compactly represent a (possibly infinite) subset of elements.

The power of symbolic automata is to make use of decision procedures for A [de Moura and

Bjørner 2011] to avoid the need for reduction to the propositional (classic) case, which can incur

an exponential blowup. For example, a propositional encoding of a Boolean expression of size

𝑁 in A would require 𝑂 (2𝑁 ) conjunctions of atomic predicates in a propositional setting (so

called “mintermization”). In some cases, a classical algorithm for finite automata can be lifted

straightforwardly to symbolic automata; in other cases, entirely new algorithms are required

[D’Antoni and Veanes 2021].

Regular languages over infinite words (so called 𝜔-regular languages) have a rich history par-

alleling that of regular languages over finite words; In fact, the two are intimately connected:

[McNaughton 1966] showed that 𝜔-regular languages are equivalently described by Büchi au-

tomata and the union of a finite set of 𝜔-regular expressions, where each expression has the

form 𝛼𝑖𝛽
𝜔
𝑖
, where 𝛼𝑖 and 𝛽𝑖 are regular expressions for finite words and 𝛽𝑖 is infinitely repeated

using the 𝜔-closure operator. Alternating Büchi automata have equivalent expressive power as

(nondeterministic) Büchi automata, but can be exponentially more compact [Miyano and Hayashi

1984].

Furthermore, 𝜔-regular languages are an important part of the theoretical foundation for model

checking of reactive systems [Clarke et al. 1999; Pnueli 1985], where both the system and (many

of) the properties to be verified of the system are described by sets of infinite traces. Various forms

of automata, including Büchi automata, can be used to describe the system while temporal logics

describe the properties to be checked. In particular, Linear temporal logic (LTL) [Pnueli 1977] is used

to describe the expected behavior of reactive systems and can be lowered to Büchi automata via a

variety of algorithms. As LTL does not fully capture 𝜔-regular languages [Emerson 1991; Wolper

1983], various extensions of LTL have been proposed [Armoni et al. 2002; Banieqbal and Barringer

1989; Duret-Lutz 2024; Eisner and Fisman 2006; Sistla et al. 1987; Vardi and Wolper 1994] to increase

its expressivity. The LTL-based automata-theoretic approach to model checking constructs the

product of the system automaton with the Büchi automaton representing the negation of the LTL

formula and then analyzes whether the resulting automaton has any accepting runs [Vardi and

Wolper 1986]. If there are no accepting runs then the system automaton is verified with respect to

the LTL formula.

Extensions of LTL based program analysis, synthesis, and realizability, that incorporate modulo
theories reasoning is an active research area. Fairness modulo theory [Dietsch et al. 2015] introduces

Büchi programs whose fair and feasible traces represent feasible traces of a given program that

violate a classical LTL property, where feasibility uses SMT solving for satisfiability checking of

constraints involving linear artithmetic. Temporal Stream Logic [Finkbeiner et al. 2019] (TSL) is an
extension of LTL intended for synthesis by introducing updates and expressions that may involve

arbitrary uninterpreted function and predicate symbols. TSL provides increased scalability at the cost

of decidability – synthesis for TSL is undecidable in general, while both realizability and synthesis

are 2ExpTime-complete for LTL [Pnueli and Rosner 1989]. Further extension of TSL with modulo

theories [Finkbeiner et al. 2022] investigates use of interpreted functions and predicate symbols,

where satisfiability of TSL modulo several standard decidable theories is shown to be neither

semidecidable nor co-semidecidable. Recent work on LTLmodulo theories for realizability [Rodríguez
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and Sánchez 2023] uses Boolean propositions in place of theory literals in combination with

additional theory constraints, that are checked by an SMT solver in order to guarantee consistent

interpretations with the theory literals they stand for. This is a form of mintermization through

bitblasting (see Section 1.3) that we believe can be avoided by a closer integration of reasoning

modulo theories into the foundations of linear temporal logic through the theory and algorithms

of symbolic derivatives that utilize transition terms.

1.1 Transition Terms
We generalize symbolic automata to 𝜔-regular languages by first lifting the concept of transition
regexes from [Stanford et al. 2021] to transition terms, which are parametric over two domains:

✓ alphabet, with an EBA A over universe Σ, over it;
✓ leaves, which represent the language of the automata, with its own EBA B.

Transition terms for B (modulo A) are nested if-then-else (ITE) expressions (𝛼 ? 𝑓 :𝑔) whose

conditions 𝛼 come from A and leaves come from B, with the intuition “if 𝛼 then 𝑓 else 𝑔”. In the

case of nested ITE expressions such as (𝛼 ? (𝛽 ? 𝑓 :𝑔) :ℎ), the primary role of A is to maintain

their cleanness by removing unreachable subterms, e.g., if 𝛼 implies 𝛽 then 𝑔 is unreachable.

The EBA B is typically accompanied with weak equivalence laws that are used as rewrite rules to
simplify leaves. In particular, conjunction and disjunction are treated as associative, commutative

and idempotent (ACI) operations, the law of excluded middle is applied, and the bottom and top

elements of B act as units/zeros of the corresponding Boolean operations. The algebra of transition

terms thus becomes an EBA with its own set of rewrite rules derived from A and B.
Transition terms can be used as the basis of defining the semantics of languages/logics and their

corresponding automata using symbolic derivatives, providing a unifying framework for automated

reasoning and rewriting that operates incrementally over a symbolic representation.

1.2 Symbolic Derivatives
Let B be an EBA of formulas 𝜙 modulo an alphabet EBAA such that B is associated with a formal

semantics𝑤 |= 𝜙 where𝑤 is a word over Σ, such that |= respects the Boolean operators of B. (I.e.,
𝑤 |= ¬𝜙 ⇔ 𝑤 ̸ |= 𝜙 , 𝑤 |= 𝜙 ∧𝜓 ⇔ 𝑤 |= 𝜙 ∧𝑤 |= 𝜓 , and 𝑤 |= 𝜙 ∨𝜓 ⇔ 𝑤 |= 𝜙 ∨𝑤 |= 𝜓 .) We say

that B has a derivative function 𝜌 when

for all 𝑎 ∈ Σ, 𝜌 (𝜙, 𝑎) is a formula in B such that 𝑎𝑤 |= 𝜙 ⇔ 𝑤 |= 𝜌 (𝜙, 𝑎).

Two classical examples of such B over a finite alphabet Σ are extended regular expressions (ERE)
with 𝜌 (𝜙, 𝑎) as the derivative 𝐷𝑎𝜙 in [Brzozowski 1964], and linear temporal logic (LTL) with 𝜌 as

the transition function 𝜌 in [Vardi 1995]. In the former case𝑤 ∈ Σ∗ and in the latter case𝑤 ∈ Σ𝜔 .
The symbolic derivative function of B is a function 𝜚 that maps 𝜙 into a transition term 𝜚 (𝜙) for
B modulo A. The transition term 𝜚 (𝜙), called the symbolic derivative of 𝜙 , is such that,

for all 𝑎 ∈ Σ, 𝜚 (𝜙) [𝑎] = 𝜌 (𝜙, 𝑎).

where 𝜚 (𝜙) [𝑎] returns the leaf that the transition term 𝜚 (𝜙) evaluates to for 𝑎. Intuitively, 𝜚 (𝜙)
represents a partial evaluation of 𝜌 with respect to 𝜙 . Observe that the size of 𝜚 (𝜙) is independent
of the size of Σ (Σ can be infinite). Existence of 𝜚 (𝜙) depends on 𝜙 distinguishing only finitely many

conditions of A, which holds both for ERE modulo A as well as LTL modulo A.

An example of a symbolic derivative of a regex \d+ is (\d ? \d∗ :⊥) whose condition \d is the

character class of all digits. In this case Σ is the set of all characters, that may be a very large set

such as Unicode, and the predicates in A are character classes. E.g., (\d ? \d∗ :⊥)[‘7’] = \d∗.
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An example of an LTL (modulo SMT theory A) or LTL⟨A⟩ formula 𝜙 and 𝜚 (𝜙) are as follows
𝜙 = G(0<𝑥) ∧ ((2|𝑥) U (3|𝑥))

𝜚 (𝜙) = ((0<𝑥) ? ((3|𝑥) ? G(0<𝑥) : ((2|𝑥) ?𝜙 :⊥)) :⊥)
where 𝑥 has integer type and 𝜙 states that 𝑥 is always positive and remains even until divisible

by 3. For example, 𝜚 (𝜙) [𝑥 ↦→8] = 𝜙 because 8 is a positive even integer that is not divisible by 3.

Observe that in this case Σ contains the infinite set of all possible interpretations for 𝑥 .
Integration of symbolic derivatives for ERE into the sequence theory solver of Z3 contributed

to a significant performance improvement of Z3 [Stanford et al. 2021]. A variant of symbolic

derivatives for regex matching is also integrated into the new nonbacktracking regex matcher of

.NET [Moseley et al. 2023] where algebraic rewrites of regexes play a key role as simplification

rules during incremental exploration of the state space of a DFA that arises during match search.

1.3 Why Modulo Theories?
The benefits of deeply integrating SMT into the core algorithms are substantial [de Moura and

Bjørner 2011] by providing incremental theory specific reasoning. At the same time, it has been

widely recognized that full 𝜔-regularity is necessary for general applications of linear temporal

properties [Pnueli 1985]. Here we achieve both goals modulo A. Our motivating application is

trace analysis of cloud services (see Section 7.4). We highlight both aspects next.

1.3.1 Avoiding Mintermization. Consider any LTL⟨A⟩ formula𝜓 that contains the A predicates

{𝛼𝑖 }𝑛𝑖=1. A standard technique to represent𝜓 in classical LTL, is to replace each 𝛼𝑖 by a proposition

𝑝𝑖 and to add the following theory constraint as a conjunction: G(∨{𝑝𝐼 | 𝐼 ⊆ {1, . . . , 𝑛}, SAT(𝛼𝐼 )})
where 𝛼𝐼 = (

∧
𝑖∈𝐼 𝛼𝑖 ) ∧ (

∧
𝑖∉𝐼 ¬𝛼𝑖 ) and 𝑝𝐼 = (

∧
𝑖∈𝐼 𝑝𝑖 ) ∧ (

∧
𝑖∉𝐼 ¬𝑝𝑖 ). This is a form of bitblasting,

with each 𝑝𝑖 acting as an independent bit, and where SAT(𝛽) decides satisfiability of the formula 𝛽

in A. Irrespective of how this is done, in general, the cost is bound to be exponential in 𝑛.

1.3.2 𝜔-Regularity Modulo A. We introduce a powerful extension RLTL⟨A⟩ (RLTL) of LTL⟨A⟩
with regexes in ERE moduloA. Besides increasing the expressive power to be 𝜔-regular moduloA,

it also enables a variety of transformations to utilize regexes. In particular, RLTL includes formulas

of the form 𝑅 □→ 𝜙 called suffix implications where 𝑅 is a regex and 𝜙 any formula in RLTL, with
the semantics𝑤 |= 𝑅 □→ 𝜙 iff ∀𝑖 : 𝑤 ..𝑖 ∈ L(𝑅) ⇒ 𝑤𝑖 .. |= 𝜙 , where𝑤 ..𝑖 is the finite prefix of𝑤 up

to position 𝑖 and𝑤𝑖 .. is the infinite suffix of𝑤 starting from position 𝑖 . RLTL also includes the dual

construct 𝑅 ^→ 𝜙 called existential suffix implication that is equivalent to ¬(𝑅 □→ ¬𝜙).

New Superpower. RLTL supports complement ~𝑅 of regexes 𝑅, such that 𝑣 ∈ L(~𝑅) ⇔ 𝑣 ∉ L(𝑅).
Thus, expressing an 𝜔-regular property such as all proper prefixes of an infinite word must be in
L(𝑅) becomes elegantly expressible by the formula ~𝑅 □→ ⊥. Since ⊥ (false) is unsatisfiable, it

follows that𝑤 |= ~𝑅 □→ ⊥ iff �𝑖 : 𝑤 ..𝑖 ∉ L(𝑅) iff ∀𝑖 : 𝑤 ..𝑖 ∈ L(𝑅).
Combined with intersection and union, this lifts the role of regexes in RLTL⟨A⟩ into a self-

contained sub-logic whose derivative rules are seamlessly integrated with the derivative rules of

the temporal formulas (see Section 7.3). We can therefore leverage algorithms in SMT [Stanford

et al. 2021] by lifting them to reason over infinite sequences in temporal logic, while ensuring

decidability modulo any core element theory A that is supported by SMT (e.g., linear arithmetic).

Regex Based Rewrites. Rewriting LTL formulas by introducing regexes can be beneficial by

leveraging regex derivatives that can avoid subsequent alternation elimination from an initial Büchi

automaton. E.g., the formula F𝛼 ∧ F𝛽 where both 𝛼 and 𝛽 belong to A states that eventually 𝛼

holds and eventually 𝛽 holds. In RLTL it is equivalent to 𝜙 = (⊤∗·𝛼 ·⊤∗) ⋒ (⊤∗·𝛽 ·⊤∗) ^→ ⊤ where

⋒ is regex intersection. Then𝑤 |= 𝜙 iff some finite prefix of𝑤 is in L(⊤∗·𝛼 ·⊤∗) ∩ L(⊤∗·𝛽 ·⊤∗).
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1.4 Contributions and Overview
We show how transition terms and derivatives can be used to generalize symbolic automata to

work with 𝜔-regular languages modulo an infinite alphabet represented by A, bringing together a

variety of classic automata and logics in a unified framework. In particular, we give:

✓ a definition of alternating Büchi automata modulo A (ABWA) and their relationship to

classical alternating Büchi automata as well as to (non-alternating) nondeterministic Büchi

automata modulo A (NBWA ) (Section 4);

✓ an alternation elimination algorithm, a symbolic generalization of [Miyano and Hayashi

1984] that incrementally constructs an NBWA from an ABWA (Section 5);

✓ a definition of linear temporal logic (LTL) [Pnueli 1977] modulo A that generalizes Vardi’s

construction of alternating Büchi automata from LTL [Vardi 1995] – with the previous results,

this gives a way to go from LTL modulo A to NBWA (Section 6);

✓ a combination of LTL modulo A with extended regular expressions modulo A (RLTL⟨A⟩)
that generalizes SPOT [Duret-Lutz et al. 2022] and PSL [Eisner and Fisman 2006] (Section 7);

✓ a formalized proof of correctness in Lean of the main derivation theorem of RLTL⟨A⟩
(Theorem 4) that links the incremental derivative based unfolding with the formal semantics.

Our combination allows regex complement, that is not supported in SPOT/PSL but can be supported

naturally by using transition terms. We also lift the classical concept of 𝜔-regular languages [Büchi

1960; McNaughton 1966] as the languages accepted by ABW so as to be modulo A, and show that

RLTL⟨A⟩ precisely captures 𝜔-regularity modulo A. Section 8 reviews related work and Section 9

discusses future work. Section 10 concludes the paper.

2 Preliminaries
As a meta-notation throughout the paper we write lhs def

= rhs to let lhs be equal by definition to rhs.
In the following let Σ be a nonempty, possibly infinite, universe of core elements. The universe of
natural numbers is denoted by N.

2.1 Effective Boolean Algebras
An Effective Boolean Algebra (EBA) over an element universe Σ [D’Antoni and Veanes 2021] is a tuple

(Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ) where A is a set of predicates that is closed under the Boolean connectives

and contains ⊥ and ⊤. For 𝑎 ∈ Σ and 𝛼 ∈ A the models relation 𝑎 ⊨ 𝛼 with ⟦𝛼⟧ def

= {𝑎 ∈ Σ | 𝑎 ⊨ 𝛼}
obeys classical Tarski laws such that ⟦⊥⟧ = ∅ and ⟦⊤⟧ = Σ. For 𝛼, 𝛽 ∈ A let 𝛼 ≡ 𝛽

def

= ⟦𝛼⟧ = ⟦𝛽⟧.
If 𝛼 ≡ ⊥ then 𝛼 is unsatisfiable (UNSAT(𝛼)) else satisfiable (SAT(𝛼)). We require all the connectives

to be computable and ⊨ to be decidable.
Let Γ ⊆ A be finite. A minterm of Γ is a satisfiable predicate (⊓𝛼∈𝑆 𝛼) ⊓ (⊓𝛼∈Γ\𝑆 𝛼

𝑐 ) for some

subset 𝑆 of Γ, where (⊓𝛼∈∅ · · · ) def

= ⊤. Thus, all predicates in Minterms(Γ) are satisfiable, mutually

disjoint, and each satisfiable predicate in Γ is equivalent to a disjunction of some minterms. So

|Minterms(Γ) | ≤ 2
|Γ |
. For example, Minterms({𝛼, 𝛽}) ⊆ {𝛼 ⊓ 𝛽, 𝛼𝑐 ⊓ 𝛽, 𝛼 ⊓ 𝛽𝑐 , 𝛼𝑐 ⊓ 𝛽𝑐 }.

We letA also stand for the EBA itself and say thatA is decidable if SAT(𝛼) is decidable. In most

of the paper we use (Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ) as a given alphabet EBA.

2.2 Boolean Closures
Given a nonempty set 𝑆 , we define the Boolean closure B(𝑆) of 𝑆 such that 𝑆 ⊆ B(𝑆) and B(𝑆) is
closed under ∨, ∧, and ¬ (as some given Boolean operators). We write B+(𝑆) for the positive Boolean
closure where ¬ is omitted. We associate a weak equivalence relation � over B(𝑆) defining ∧ and ∨
both as associative, commutative, and idempotent (ACI) operations. Weak equivalence is lifted to
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transition terms with leaves in B(𝑆) in Section 3 and plays a key role in maintaining finiteness of
induced state space in later automata constructions.

The disjunctive normal form of 𝜙 ∈ B+(𝑆) is a disjunction∨𝑛
𝑖=0𝜓𝑖 where each𝜓𝑖 is a conjunction∧

𝑋𝑖 for some 𝑋𝑖 ⊆ 𝑆 . We adopt the set-of-sets representation of DNF(𝜙) as {𝑋𝑖 }𝑛𝑖=0. For example,

DNF((𝑠1 ∨ 𝑠2) ∧ 𝑠3) = {{𝑠1, 𝑠3}, {𝑠2, 𝑠3}} that stands for (𝑠1 ∧ 𝑠3) ∨ (𝑠2 ∧ 𝑠3) and DNF(𝑠1) = {{𝑠1}}.
Let 𝝋 = DNF(𝜑) and 𝝍 = DNF(𝜓 ). Then we can define ∨ and ∧ directly over the set-of-sets

representation by 𝝋 ∨𝝍 def

= 𝝋 ∪𝝍 and 𝝋 ∧𝝍 def

= {𝑋 ∪𝑌 | 𝑋 ∈ 𝝋, 𝑌 ∈ 𝝍}. Observe that DNF(𝜙) ⊆ 2
𝑆

and in DNF, ∅ acts as the unit element (⊥) of ∨, and {∅} acts as the unit element (⊤) of ∧. Intuitively,
DNF is going to be used locally on small formulas. A key advantage here is that ACI of the intended
semantics of the operations is built-in into the set-of-sets representation.

2.3 Words and Streams
A stream or infinite word 𝑤 ∈ Σ𝜔 is a function from N to Σ with𝑤𝑖

def

= 𝑤 (𝑖). For finite words 𝑣 ∈ Σ∗
the 𝑖’th element 𝑣𝑖 of 𝑣 is defined for 0 ≤ 𝑖 < |𝑣 | where |𝑣 | is the length of 𝑣 . Concatenation of

𝑣 ∈ Σ∗ with𝑤 ∈ Σ𝜔 (or𝑤 ∈ Σ∗) is the word or stream 𝑣 ·𝑤 (or 𝑣𝑤 ) such that if 𝑖 < |𝑣 | then (𝑣𝑤)𝑖 is
𝑣𝑖 else𝑤𝑖−|𝑣 | . Let𝑤 ∈ Σ𝜔 and 𝑛 ∈ N. Let head (𝑤) def

= 𝑤0. We use the following stream operations

that are adopted from the standard Stream library in Lean in order to align with the terminology

used in the Lean formalization in Section 7.6.

drop(𝑛,𝑤) ∈ Σ𝜔 is the suffix of𝑤 s.t., for all 𝑖 , drop(𝑛,𝑤)𝑖 = 𝑤𝑛+𝑖 ; tail(𝑤) def

= drop(1,𝑤).
take(𝑛,𝑤) ∈ Σ∗ is the prefix of𝑤 of length 𝑛 such that take(𝑛,𝑤)𝑖 = 𝑤𝑖 for 𝑖 < 𝑛.

If 𝑎 ∈ Σ then 𝑎::𝑤 is the stream with head 𝑎 and tail𝑤 , and 𝑎𝜔 is the stream (𝑎𝜔 )𝑖 = 𝑎 for all 𝑖 .

If 𝐿 ⊆ Σ∗ then 𝐿𝜔 is the set of all 𝑤 ∈ Σ𝜔 for which there exists Δ ∈ N𝜔 such that for all 𝑖 ,

take(1+Δ𝑖 , drop(
∑

𝑗<𝑖 (1+Δ 𝑗 ),𝑤)) ∈ 𝐿where
∑

𝑗<0 (. . .) def

= 0. Note that 𝐿𝜔 = (𝐿\{𝜖})𝜔 . For example,

{𝑎}𝜔 = {𝑎𝜔 } where Δ = 0
𝜔
.

We also use the following, more light-weight, math notations for stream operations. For𝑤 ∈ Σ𝜔
and 𝑖 ≥ 0, let𝑤 ..𝑖

def

= take(𝑖 + 1,𝑤) and𝑤𝑖 ..
def

= drop(𝑖,𝑤). Note that𝑤 ..0 = 𝑤0 and𝑤0.. = 𝑤 .

2.4 Languages and Derivatives
Let𝔇 be either Σ𝜔 or Σ∗, with the associated definition of complement ∁(𝐿) def

= 𝔇 \ 𝐿 for 𝐿 ⊆ 𝔇.

The derivative of 𝐿 for 𝑎 ∈ Σ is D𝑎 (𝐿) def

= {𝑣 | 𝑎𝑣 ∈ 𝐿}. Irrespective of choice of𝔇, one can show

that D𝑎 (∁(𝐿)) = ∁(D𝑎 (𝐿)) and D𝑎 (𝐿 ∩ 𝐿′) = D𝑎 (𝐿) ∩ D𝑎 (𝐿′).
We use the language denotation function L in relation to Σ∗ and ℒ in relation to Σ𝜔 .

2.5 Extended Regular Expressions
Consider an EBA (Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ). ERE⟨A⟩ or ERE for short is defined by the following

abstract grammar, where 𝛼 ∈ A. We let 𝑅 ∈ ERE, 𝑅 is called a regex. All operators are in order of

precedence where ⋓ binds weakest. Let 𝑅+ def

= 𝑅 · 𝑅∗.

𝑅 ::= 𝛼 | 𝜀 | 𝑅1 ⋓ 𝑅2 | 𝑅1 ⋒ 𝑅2 | 𝑅1 · 𝑅2 | 𝑅∗ | ~𝑅

Union (⋓), intersection (⋒), and complement (~), give rise to the EBA (Σ∗, ERE, �,⊥,⊤∗, ⋓, ⋒, ~)
where 𝑣 � 𝑅 ⇔ 𝑣 ∈ L(𝑅) with L(𝑅) having the standard language semantics for ERE where, for

all 𝑎 ∈ Σ: 𝑎 ⊨ 𝛼 ⇔ 𝑎 � 𝛼 . RE denotes the standard fragment of ERE without ⋒ and ~. For ERE we

use weak equivalence � to simplify regexes in a light-weight manner so that language semantics is

preserved: ⋓ and ⋒ are ACI, 𝜀 is the unit of ·, ~⊥ � ⊤∗, and further rules such as ~𝜀 � ⊤+.
The standard notation for the regex union operator is |, and & is typically used as the regex

intersection operator. Here we use ⋓ and ⋒ to better align with the Lean formalization in Section 7.6

where the symbols | and & are unavailable to this end.
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3 Transition Terms
Let (Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ) be a fixed EBA and let B be a set or type called leaves. Here we provide
a generalized view of transition regexes from [Stanford et al. 2021] that can be applied both to

represent derivatives over Σ∗ as well as Σ𝜔 .The set of transition terms TTerm⟨A,B⟩ (TTerm for

brevity) is defined by the following abstract grammar where 𝑓 ∈ TTerm, 𝛼 ∈ A, and ℓ ∈ B:
𝑓 ::= ℓ | (𝛼 ? 𝑓1 : 𝑓2)

where 𝛼 is called the condition, 𝑓1 the then-case and 𝑓2 the else-case of (𝛼 ? 𝑓1 : 𝑓2). While the

formalization of TTerm as an inductive type in Lean in Section 7.6 requires a constructor for leaves,

we omit it here to avoid leaf conversion rules (much like Σ ⊆ Σ∗ while Σ∗ is List Σ in Lean).

We work in a similar but more general setting than if-then-else terms in SMT and primarily

want to avoid lift rules [Stanford et al. 2021, Section 4.1] that we consider as an implementation

aspect of TTerm⟨A,B⟩ that depends on B = ERE⟨A⟩. All binary operations ⋄ : B × B → B′, and
unary operations ♦ : B → B′ are, by definition, always lifted to TTerm:

(𝛼 ? 𝑓 :𝑔) ⋄ℎ def

= (𝛼 ? 𝑓 ⋄ℎ :𝑔 ⋄ℎ) ℓ ⋄ (𝛼 ? 𝑓 :𝑔) def

= (𝛼 ? ℓ ⋄ 𝑓 : ℓ ⋄𝑔) (1)

♦(𝛼 ? 𝑓 :𝑔) def

= (𝛼 ? ♦𝑓 : ♦𝑔) (2)

When ⊥ ∈ B we use (𝛼 ? 𝑓 ) def

= (𝛼 ? 𝑓 :⊥) with ⊥ as the implicit else-case. Observe
therefore that (𝛼 ? 𝑓 ) ⋄𝑔 = (𝛼 ? 𝑓 ⋄𝑔 :⊥ ⋄𝑔) and ♦(𝛼 ? 𝑓 ) = (𝛼 ? ♦𝑓 : ♦⊥).

The case when B and B′ are different types is needed in Sections 5 and 7.3. Given 𝑎 ∈ Σ and

𝑓 ∈ TTerm⟨A,B⟩, the evaluation (leaf) of 𝑓 for 𝑎, denoted by 𝑓 [𝑎], is defined as follows.

ℓ [𝑎] def

= ℓ, (𝛼 ? 𝑓1 : 𝑓2)[𝑎] def

= if 𝑎 ⊨ 𝛼 then 𝑓1 [𝑎] else 𝑓2 [𝑎]
Therefore, the following facts hold for all the lifted operations:

(𝑓 ⋄𝑔) [𝑎] = 𝑓 [𝑎] ⋄𝑔[𝑎] ∧ (♦𝑓 ) [𝑎] = ♦(𝑓 [𝑎]) (3)

Weak equivalence of 𝑓 , 𝑔 ∈ TTerm⟨A,B⟩ is defined by 𝑓 � 𝑔
def

= ∀𝑎 ∈ Σ : 𝑓 [𝑎] � 𝑔[𝑎].
Leaves of 𝑓 , lvs(𝑓 ), and conditions of 𝑓 , conds(𝑓 ), are defined by induction over TTerm.

A transition term 𝑓 is clean when all of its branches are feasible, in particular ∀ℓ ∈ lvs(𝑓 ) : ∃𝑎 :

𝑓 [𝑎] = ℓ . Many rewrites that preserve � can be applied incrementally during operations on TTerm
by incorporating satisfiability checking of A to eliminate unreachable subterms. Some rewrites,

such as (_ ? 𝑓 : 𝑓 ) � 𝑓 , (⊤ ? 𝑓 : _) � 𝑓 , and (⊥ ? _ : 𝑓 ) � 𝑓 are always applied implicitly as trivial

condition elminations.

Example 3.1. Let 𝜑 belong to B and let 𝛼 and 𝛽 belong to A such that 𝛼 implies 𝛽 . The rewrites

below illustrate a typical scenario where the initial transition term (the one in the first row below)

is computed and simplified. Let B be an EBA with disjunction ∨, complement ¬, bottom element

⊥, and top element x (to distinguish it from ⊤ in A). The law of excluded middle in B is thus

¬𝜑∨𝜑 � x, and further weak equivalence laws include ¬⊥ � x and x ∨ 𝜑 � x.
¬(𝛼 ?𝜑 :⊥) ∨ (𝛽 ?𝜑 :⊥)

(𝛼 ? (𝛽 ?¬𝜑∨𝜑 :¬𝜑∨⊥) : (𝛽 ?¬⊥∨𝜑 :¬⊥∨⊥)) (lift ¬ and ∨ to TTerm⟨A,B⟩)

(𝛼 ? (𝛽 ?x :¬𝜑) : (𝛽 ?x :x))
(rewrites of leaves based on � in B)

(𝛼 ? (𝛽 ?x :¬𝜑) :x) (trivial condition elimination of 𝛽)

(𝛼 ?x :x)
(UNSAT(𝛼⊓𝛽𝑐 ) in A so (𝛽 ?x :¬𝜑) rewrites to x)

x
(trivial condition elimination of 𝛼)

More generally, TTerm⟨A,B⟩ becomes a derived EBA with it own set of rewrite rules. Elimination

of unreachable subterms, as with ¬𝜑 above, is called cleaning in [Stanford et al. 2021]. ⊠
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When B is an EBA modulo A, such as ERE⟨A⟩, the implementation of TTerm⟨A,B⟩ can
maintain a symbolic representation of the lifted Boolean operators of B. In particular, it can

be beneficial not to always propagate disjunctions into leaves by (1), but to maintain top-level

disjunctions as operators between transition terms.

Example 3.2. Consider TTerm⟨A, ERE⟨A⟩⟩. A typical case is that the symbolic derivative of a

regex 𝛼 ·𝐿 ⋓ 𝛽 ·𝑅, where 𝛼 and 𝛽 are predicates in A, has the form (𝛼 ?𝐿) ⋓ (𝛽 ?𝑅). Rather than
always computing (𝛼 ? (𝛽 ?𝐿 ⋓ 𝑅 :𝐿) : (𝛽 ?𝑅)) the union operator ⋓ is maintained as a symbolic

operator between the transition regexes as (𝛼 ?𝐿) ⋓ (𝛽 ?𝑅). We can call it the Antimirov normal
form in this case, in analogy with [Antimirov 1996]. Similar representation can be maintained

for RLTL⟨A⟩. One key advatage is to avoid unnecessary cleaning when it is irrelevant how the

conditions in the separate disjuncts relate to each other (e.g., whether 𝛼 and 𝛽 overlap or not). ⊠

4 Alternating Büchi Word Automata Modulo Theories
We now turn our attention to alternating Büchi automata over words or ABW (which admit a

linear time translation from LTL [Tsay and Vardi 2021]) and show how they can be generalized

using transition terms so as to be modulo (Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ). The key aspect of the following

definition is that transitions in the automata are represented symbolically by transition terms.

An alternating Büchi automaton modulo A (ABWA ) is a tuple𝑀 = (A, 𝑄, 𝒒0, 𝜚, 𝐹 ) where 𝑄 is a

finite set of states, 𝒒0 ∈ B+(𝑄) is an initial state combination, 𝐹 ⊆ 𝑄 is a set of accepting states, and
𝜚 : 𝑄 → TTerm⟨A,B+(𝑄)⟩ is a transition function.

Two ABWA ’s𝑀 and 𝑁 are compatible if all shared states of𝑀 and 𝑁 have identical behaviors:

∀𝑞 ∈ 𝑄𝑀 ∩𝑄𝑁 : 𝜚𝑀 (𝑞) = 𝜚𝑁 (𝑞) ∧ (𝑞 ∈ 𝐹𝑀 ⇔ 𝑞 ∈ 𝐹𝑁 )

Boolean operations ⋄ ∈ {∧,∨} over compatible𝑀, 𝑁 ∈ ABWA , are:

𝑀 ⋄𝑁 def

= (A, 𝑄𝑀 ∪𝑄𝑁 , 𝒒
0

𝑀 ⋄ 𝒒0

𝑁 , 𝜚𝑀 ∪ 𝜚𝑁 , 𝐹𝑀 ∪ 𝐹𝑁 )

𝛼𝑐 𝛼𝑐

𝛼 𝛼

𝛼𝑐

𝛼

⊤∧

∧

𝑞0

𝑞1

𝑞2

⊤

Fig. 1. ABWA .

In figures we show transition terms 𝜚 (𝑞) by symbolic transitions 𝑞 𝛽−→𝜙

where𝜙 ∈ B+(𝑄) is a leaf of 𝜚 (𝑞) guarded by the branch condition 𝛽 ∈ A
from the root of 𝜚 (𝑞) to 𝜙 . The automaton𝑀 (or 𝜚𝑀 ) is clean when all

the transition terms in 𝜚𝑀 are clean. For example, the automaton in

Figure 1 is clean when both 𝛼 and 𝛼𝑐 are satisfiable.

The DNF normal form of 𝜚 , DNF(𝜚 ), maps 𝑞 ∈ 𝑄 to DNF(𝜚 (𝑞)). Let
𝝔 = DNF(𝜚 ). We let also conds(𝑀) def

=
⋃

𝑞∈𝑄 conds(𝜚 (𝑞)) denote the set
of all conditions in 𝜚 . E.g., in Figure 1, conds(𝑀) = {𝛼} and 𝝔 (𝑞0) = (𝛼 ? {{𝑞2, 𝑞0}} : {{𝑞1, 𝑞0}}).

4.1 Runs and Languages
Let𝑀 = (A, 𝑄, 𝒒0, 𝜚, 𝐹 ) be an ABWA . The standard definition of runs [Vardi 1995] uses 𝑋 ⊆ 𝑄 to

specify satisfying assignments for 𝜙 ∈ B+(𝑄) as follows where ⊨ is standard (Tarski) semantics:

𝑋 satisfies𝜙 def

=
⋃

𝑞∈𝑋 {𝑞 ↦→ true} ∪⋃𝑞∈𝑄\𝑋 {𝑞 ↦→ false} ⊨ 𝜙

Lemma 1. ∀𝜙 ∈ B+(𝑄), 𝑋 ⊆ 𝑄 : 𝑋 satisfies𝜙 ⇔ ∃𝑌 ⊆ 𝑋 : 𝑌 ∈ DNF(𝜙).

Proof. We use that 𝑋 satisfies 𝜙 iff some 𝑋min ⊆ 𝑋 satisfies 𝜙 in a minimal manner [Kupferman

2018, 4.5.1], that we can formally define here by using DNF(𝜙) (recall that DNF(𝜙) ⊆ 2
𝑄
):

𝑋min ∈ antichain⊊ (DNF(𝜙)) antichain⊊ (𝑋 ) def

= {𝑥 ∈ 𝑋 | �𝑦 ∈ 𝑋 : 𝑦 ⊊ 𝑥} (4)

Note that antichain⊊ (DNF(𝜙)) ⊆DNF(𝜙) and if 𝑌 ∈DNF(𝜙) then 𝑌 satisfies𝜙 since 𝜙 ∈B+(𝑄). □
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Let 𝑎𝑤 ∈ Σ𝜔 and 𝑞 ∈ 𝑄 . A run for 𝑎𝑤 from 𝑞 is a (potentially infinite) 𝑄-labelled tree 𝜏 whose

root node has label 𝑞 and, by using Lemma 1, there exists 𝑋 ∈ DNF(𝜚 (𝑞) [𝑎]) such that, for each

𝑝 ∈ 𝑋 , there is an immediate subtree 𝜏𝑝 of 𝜏 such that 𝜏𝑝 is a run for𝑤 from 𝑝 .

A run 𝜏 is accepting if all of the infinite branches of 𝜏 visit 𝐹 infinitely often, where an infinite
branch visits the root of 𝜏 and then continues as an infinite branch from some immediate subtree

of 𝜏 . For𝑤 ∈ Σ𝜔 and 𝑞 ∈ 𝑄 :𝑤 is accepted from 𝑞 iff there exists an accepting run for𝑤 from 𝑞; the

language of 𝑞 in𝑀 is defined and lifted to B+(𝑄) as follows:

ℒ𝑀 (𝑞) def

= {𝑤 ∈ Σ𝜔 | 𝑤 is accepted from 𝑞}
ℒ𝑀 (q∨p) def

= ℒ𝑀 (q) ∪ℒ𝑀 (p) ℒ𝑀 (q∧p) def

= ℒ𝑀 (q) ∩ℒ𝑀 (p) ℒ(𝑀) def

= ℒ𝑀 (𝒒0) (5)

For the positive Boolean operations it follows that ℒ(𝑀 ∧ 𝑁) = ℒ(𝑀) ∩ℒ(𝑁) and ℒ(𝑀 ∨ 𝑁) =
ℒ(𝑀) ∪ℒ(𝑁), as in the classical case [Kupferman 2018, Theorem 20]. Complementation of an

ABWA 𝑀 is theoretically possible via alternation elimination (Section 5) and mintermization

(Section 4.1.1) followed by [Kupferman 2018, Theorem 4], but the existence of a symbolic algorithm
that would construct an ABWA ¬𝑀 from𝑀 such that ℒ(¬𝑀) = ∁(ℒ(𝑀)) is an open problem.

We adopt the same notation also for classical ABW 𝑀 thatℒ𝑀 (q) denotes the language of𝑀
accepted starting from the state combination q ∈ B+(𝑄𝑀 ).

4.1.1 From ABWA to Classical ABW. A variety of decidability results for ABWA follow directly

by reduction to classical ABW (this does not imply a practical implementation scheme, as it requires

mintermization). Let𝐴 = Minterms(conds(𝑀)) be a finite alphabet and for 𝑎 ∈ Σ let 𝑎 ∈ 𝐴 denote the

minterm such that 𝑎 ⊨ 𝑎. Let �̂� denote the classical ABW (𝐴,𝑄, 𝒒0, �̂� , 𝐹 ) where �̂� (𝑞, 𝑎) def

= 𝜚 (𝑞) [𝑎]
and lift 𝑎 ∈ 𝐴 to𝑤 ∈ 𝐴𝜔

. Then

Lemma 2. ∀𝑀 ∈ ABWA, 𝜙 ∈ B+(𝑄𝑀 ),𝑤 ∈ Σ𝜔 : 𝑤 ∈ ℒ
�̂�
(𝜙) ⇔ 𝑤 ∈ ℒ𝑀 (𝜙).

In particular, decidability of ℒ(𝑀) ≠ ∅, provided that A is decidable, follows from decidability

ofℒ(�̂�) ≠ ∅ [Miyano and Hayashi 1984; Rabin 1970].

4.1.2 From Classical ABW to ABWA . In the opposite direction, consider a classical ABW 𝑀 =

(2𝑃 , 𝑄, 𝒒0, 𝜌, 𝐹 ) where 𝑃 is a finite set of propositions. For all 𝑎 ⊆ 𝑃 let 𝛼𝑎
def

= (⊓𝑝∈𝑎 𝑝) ⊓ (⊓𝑝∈𝑃\𝑎 𝑝
𝑐 ).

𝑀 is lifted to𝑀A = (A, 𝑄, 𝒒0, 𝜚, 𝐹 ) where the EBA for A is essentially a SAT solver for B(𝑃) and
𝜚 maps 𝑞 ∈ 𝑄 to

∨
𝑎⊆𝑃 (𝛼𝑎 ? 𝜌 (𝑞, 𝑎)). Then 𝜚 (𝑞) [𝑎] = 𝜌 (𝑞, 𝑎) and so ℒ(𝑀) = ℒ(𝑀A).

4.2 Nondeterministic Büchi Word Automata Modulo Theories
An ABWA 𝑀 is nondeterministic, an NBWA , if all leaves of all transition terms in 𝜚𝑀 and 𝒒0

𝑀

are disjunctions of states. One can view an NBWA equivalently as a finite automaton modulo

A [D’Antoni and Veanes 2021] but with the Büchi acceptance condition, i.e., that each transition

term 𝜚𝑀 (𝑞) for 𝑞 ∈ 𝑄𝑀 has the equivalent representation as

∨𝑛
𝑖=1 (𝛼𝑖 ?𝑞𝑖) where 𝑞𝑖 ∈ 𝑄𝑀 .

Decidability of nonemptiness of a clean NBWA has linear time complexity, that follows by

adapting the corresponding result from [Emerson and Lei 1985, 1987], where cleaning, as a separate

preprocessing step, has computational complexity that depends on that of satisfiability in A but

is otherwise linear in the size of𝑀. In particular, mintermization, i.e., conversion to the classical

setting, is avoided.

NBWs play a prominent role in model-checking. Of particular interest is product of NBWs that

is used to determine if a specification of bad behavior, translated into an NBW, intersects with a

system model that is also given as an NBW. The ability to define and work with such modelsmodulo
background theories, i.e., with NBWA directly, can increase their succinctness by an exponential
factor without later on incurring that cost in algorithms, as shown in Section 5.3.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 2. Publication date: January 2025.



2:10 Margus Veanes, Thomas Ball, Gabriel Ebner, and Ekaterina Zhuchko

The alternation elimination algorithm Æ in Section 5 is used to define a product algorithm for

NBWA ’s in Section 5.3 that is quadratic in the size of the automata provided that satisfiability

checking in A has constant cost. Most importantly, mintermization is avoided.

5 Alternation Elimination
Although alternating Büchi automata are an attractive target for temporal logic, incurring no space

blowup, the problem of testing for nonemptiness is harder for alternating automata (due to the

presence of both ∧ and ∨ in the state formula) than non-alternating automata [Boker et al. 2010].

Let𝑀 = (A, 𝑄, 𝒒0, 𝜚, 𝐹 ) be an ABWA modulo (Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ). We introduce an alternation

elimination algorithm for𝑀 that is a derivative-based generalization of the algorithm in [Miyano

and Hayashi 1984] (see also [Vardi 1995, Proposition 20]). The algorithm constructs an NBWA
𝑁 = (A, 𝑆, 𝑆0, 𝜎, 𝐹𝑁 ) accepting the same language as 𝑀. As shown by [Boker et al. 2010], the

concept behind [Miyano and Hayashi 1984] accurately captures the prime concern in alternation

removal, which is the need to associate the states of the equivalent NBWA 𝑁 with two sets of states

from𝑀, which means that a Ω(3 |𝑄 | ) space blowup cannot be avoided. Let 𝝔 = DNF(𝜚 ).
In the rest of this section let Q = 2

2
𝑄

, 𝑃 = 2
𝑄 × 2𝑄 , and P = 2

𝑃
. Q is the leaf type of transition

terms of𝑀 in DNF, i.e., 𝝔 : 𝑄 → TTerm⟨A,Q⟩. P is the leaf type of transition terms of 𝑁 where 𝑃

is the state type of 𝑁 , i.e., 𝜎 : 𝑆 → TTerm⟨A,P⟩. 𝐹𝑁 = {⟨𝑈 ,𝑉 ⟩ ∈ 𝑆 | 𝑈 = ∅}.

5.1 AlgorithmÆ
We start by defining the key operation @ called alternation product or alternation times of 𝑓 , 𝑔 ∈
TTerm⟨A,Q⟩ as a term 𝑓 @ 𝑔 ∈ TTerm⟨A,P⟩. Let 𝝋, 𝝍 ∈ Q and first define @: Q × Q → P:

𝝋 @ 𝝍 def

= {⟨𝑋 \ 𝐹,𝑌 ∪ (𝑋 ∩ 𝐹 )⟩ | 𝑋 ∈ 𝝋, 𝑌 ∈ 𝝍} (6)

The purpose of @ is to partition the states into those that have not yet visited a final state (𝑋 \ 𝐹 ) and
those that have (𝑌∪(𝑋∩𝐹 )). Observe that @ is not symmetric and {∅} intuitively denotes⊤ inQ. For
example, if 𝑞 ∉ 𝐹 then {{𝑞}} @ {∅} = ⟨{𝑞}, ∅⟩ is not a final state of 𝑁 while {∅} @ {{𝑞}} = ⟨∅, {𝑞}⟩
is a final state of 𝑁 . Recall that (1) lifts @ to TTerm⟨A,Q⟩ × TTerm⟨A,Q⟩ → TTerm⟨A,P⟩.
For ℎ ∈ TTerm⟨A,P⟩ let states(ℎ) def

=
⋃

lvs(ℎ). So states(ℎ) ⊆ 𝑃 . The algorithm Æ constructs

an equivalent NBWA from𝑀. For𝑈 ,𝑉 ⊆ 𝑄 let

𝝔 (𝑈 ) def

=

{
{∅}, if 𝑈 = ∅;∧

𝑞∈𝑈 𝝔 (𝑞), otherwise.

@𝝔 (⟨𝑈 ,𝑉 ⟩) def

=

{
𝝔 (𝑉 ) @ {∅}, if 𝑈 = ∅;
𝝔 (𝑈 ) @ 𝝔 (𝑉 ), otherwise.

and let 𝒅𝒐𝒎(𝜎) denote the domain of the partially defined transition function 𝜎 in the while loop

of the Æ algorithm that computes the fixpoint of 𝑆 :

Æ(𝑀) def

=


𝑆0 = DNF(𝒒0) @ {∅}; 𝑆 ← 𝑆0;𝜎 ← ∅;
while ∃ 𝑠 ∈ 𝑆 \ 𝒅𝒐𝒎(𝜎) let 𝑓 = @𝝔 (𝑠) in 𝜎 (𝑠) ← 𝑓 ; 𝑆 ← 𝑆 ∪ states(𝑓 )
return (A, 𝑆, 𝑆0, 𝜎, {⟨𝑈 ,𝑉 ⟩ ∈ 𝑆 | 𝑈 = ∅})

The key power of the algorithm lies in its modular use of TTerm that enables eager simplification

of transition terms 𝑓 @ 𝑔 by utilizing satisfiability checking inA, both by cleaning and by rules like

Lemma 3 below. That said, simplifications in TTerm, while essential for implementing Æ, require

satisfiability in A to be decidable, which is not necessary for the formal correctness (Theorem 1).

We make use of the following state reduction lemma in the following example, where the number

of states would otherwise double.
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Lemma 3 (State Reduction). If 𝑈 ′ ⊆ 𝑈 , 𝑉 ′ ⊆ 𝑉 , and 𝑈 = ∅ ⇔ 𝑈 ′ = ∅ then if 𝝔 (𝑈 ′) = 𝝔 (𝑈 )
and 𝝔 (𝑉 ′) = 𝝔 (𝑉 ) then ⟨𝑈 ,𝑉 ⟩ can be replaced by ⟨𝑈 ′,𝑉 ′⟩ in the Æ algorithm.

Proof. The computation of 𝑓 preserves language equivalence if we identify states with identical

transition terms and acceptance conditions. □

Example 5.1. Let𝑀 be as in Figure 1, where 𝒒0 = 𝑞0, 𝐹 = {𝑞0,⊤}, and
𝜚 = {𝑞0 ↦→ (𝛼 ?𝑞2 ∧ 𝑞0 :𝑞1 ∧ 𝑞0), 𝑞1 ↦→ (𝛼 ?⊤ :𝑞1), 𝑞2 ↦→ (𝛼 ?𝑞2 :⊤), ⊤ ↦→ ⊤}

Each row of the following table represents one iteration of the while-loop in the run of Æ(𝑀).
Since 𝑞0 ∈ 𝐹 , observe that DNF(𝑞0) @ {∅} = {{𝑞0}} @ {∅} = {⟨∅, {𝑞0}⟩}.

𝑠 𝜎 (𝑠) Resulting NBWA
𝑠0=⟨∅, {𝑞0}⟩ (𝛼 ? {{𝑞2, 𝑞0}} : {{𝑞1, 𝑞0}}) @ {∅}

𝛼𝑐

𝛼𝑐

𝛼

𝛼𝛼𝑐

𝛼

𝑠0

𝑠1

𝑠2� (𝛼 ? {⟨{𝑞2}, {𝑞0}⟩} : {⟨{𝑞1}, {𝑞0}⟩})
𝑠1=⟨{𝑞1}, {𝑞0}⟩ 𝝔 (𝑞1) @ 𝝔 (𝑞0)

� (𝛼 ? {⟨∅, {𝑞2, 𝑞0}⟩} : {⟨{𝑞1}, {𝑞1, 𝑞0}⟩})
(Lma 3) � (𝛼 ? {⟨∅, {𝑞0}⟩} : {⟨{𝑞1}, {𝑞0}⟩})

𝑠2=⟨{𝑞2}, {𝑞0}⟩ (Lma 3) � (𝛼 ? {⟨{𝑞2}, {𝑞0}⟩} : {⟨∅, {𝑞0}⟩})

The constructions of 𝜎 (𝑠1) and 𝜎 (𝑠2) applied Lemma 3 whereby both {𝑞1, 𝑞0} and {𝑞2, 𝑞0} simplify

to {𝑞0}. Cleaning was used to eliminate nested ITEs with condition 𝛼 . ⊠

5.2 Correctness of Æ
The correctness proof of the algorithm is by reduction to [Miyano and Hayashi 1984], using generic

properties of transition terms and mintermization. Given a pair ⟨𝑈 ,𝑉 ⟩ of finite sets 𝑈 ,𝑉 of states

let ⋏⟨𝑈 ,𝑉 ⟩ def

=
∧(𝑈 ∪𝑉 ).

Theorem 1 (Æ). ∀𝑞 ∈ 𝑄Æ(𝑀 ) : ℒÆ(𝑀 ) (𝑞) = ℒ𝑀 (⋏𝑞) andℒ(Æ(𝑀)) = ℒ(𝑀).

Proof. Let 𝑁 = Æ(𝑀) as above. The algorithm terminates because 𝑃 is finite and 𝑆 ⊆ 𝑃 . First

let 𝑞 = ⟨𝑈 ,𝑉 ⟩ be such that𝑈 ≠ ∅. Note that 𝑉 = ∅ implies that 𝝔 (𝑉 ) = {∅}.

𝜎 (⟨𝑈 ,𝑉 ⟩) [𝑎] = (𝝔 (𝑈 ) @ 𝝔 (𝑉 )) [𝑎]

= (DNF(∧𝑡 ∈𝑈 𝜚 (𝑡)) @ DNF(∧𝑡 ∈𝑉 𝜚 (𝑡))) [𝑎] (3)= DNF(∧𝑡 ∈𝑈 (𝜚 (𝑡) [𝑎])) @ DNF(∧𝑡 ∈𝑉 (𝜚 (𝑡) [𝑎]))
(6)

= {⟨𝑋\𝐹,𝑌 ∪ (𝑋 ∩ 𝐹 )⟩ | 𝑋 ∈ DNF(∧𝑡 ∈𝑈 (𝜚 (𝑡) [𝑎])), 𝑌 ∈ DNF(
∧

𝑡 ∈𝑉 (𝜚 (𝑡) [𝑎])) (7)

Now let 𝑞 = ⟨𝑈 ,𝑉 ⟩ be such that𝑈 = ∅. We get that

𝜎 (⟨𝑈 ,𝑉 ⟩) [𝑎] = (𝝔 (𝑉 ) @ {∅}) [𝑎] = (DNF(∧𝑡 ∈𝑉 𝜚 (𝑡)) @ {∅}) [𝑎] (3)= DNF(∧𝑡 ∈𝑉 (𝜚 (𝑡) [𝑎])) @ {∅}
(6)

= {⟨𝑋\𝐹, 𝑋 ∩ 𝐹 ⟩ | 𝑋 ∈ DNF(∧𝑡 ∈𝑉 (𝜚 (𝑡) [𝑎]))} (8)

Next, we relate (7) and (8) with �̂� (recall Section 4.1), where for 𝑊 ⊆ 𝑄 ,
∧

𝑡 ∈𝑊 (𝜚 (𝑡) [𝑎]) =∧
𝑡 ∈𝑊 �̂� (𝑡, 𝑎) – (7) and (8) represent the construction used in [Miyano and Hayashi 1984] (MH84)

on top of which further analysis over accepting runs of �̂� is built, and where choosing all satisfiers

of 𝜙 from DNF(𝜙) is sufficient by Lemma 1. It follows, for all 𝑠 ∈ 𝑆 and 𝑤 ∈ Σ𝜔 , that 𝑤 ∈ ℒ𝑁 (𝑠)
⇔(by Lemma 2)𝑤 ∈ ℒ

𝑁
(𝑠) ⇔(by MH84)𝑤 ∈ ℒ

�̂�
(⋏𝑠) ⇔(by Lemma 2)𝑤 ∈ ℒ𝑀 (⋏𝑠).

So ℒ(𝑀) =ℒ𝑀 (𝒒0) = ⋃
𝑋 ∈DNF(𝒒0 )ℒ𝑀 (

∧
𝑋 ) = ⋃

𝑠∈𝑆0 ℒ𝑀 (⋏𝑠) =
⋃

𝑠∈𝑆0 ℒ𝑁 (𝑠) =ℒ(𝑁). □
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5.3 Product of NBWModulo Theories
A direct application of Æ is the product of two compatible NBWA ’s 𝑁𝑖 = (A, 𝑄𝑖 , 𝑄

0

𝑖 , 𝜚𝑖 , 𝐹𝑖 ), for
𝑖 ∈ {1, 2} as the NBWA :

𝑁1 × 𝑁2

def

= Æ(𝑁1 ∧ 𝑁2)
Product provides an essential step in the automata-based approach to model checking, as discussed

in the introduction. We get the following corollary of Theorem 1. Assume, w.l.o.g., that𝑄1 ∩𝑄2 = ∅.

Corollary 1 (Product). |𝑄𝑁1×𝑁2
| ≤ 4|𝑄1 | |𝑄2 | ∧ ∀ ⟨𝑈 ,𝑉 ⟩ ∈ 𝑄𝑁1×𝑁2

:

(1) 𝑈 ∩𝑉 = ∅ ∧𝑈 ∩ (𝐹1∪𝐹2) = ∅
(2) ∃𝑞 ∈𝑄1, 𝑝 ∈𝑄2 : 𝑈 ∪𝑉 = {𝑞, 𝑝} ∧ ℒ𝑁1×𝑁2

(⟨𝑈 ,𝑉 ⟩) = ℒ𝑁1
(𝑞) ∩ℒ𝑁2

(𝑝).

Recall that, in an NBWA , 𝜚 (𝑞) is maintained as a disjunction of symbolic transitions representing

the transition term

∨
𝑖∈𝐼 (𝛼𝑖 ? q𝑖) where q𝑖 = {{𝑞𝑖 }} for some 𝑞𝑖 ∈ 𝑄 . (Recall that (𝛼𝑖 ? q𝑖) stands

for (𝛼𝑖 ? q𝑖 : ∅) here, where ∅ acts as ⊥ in DNF.) The alternation product 𝝔 (𝑞) @ 𝝔 (𝑝) can then be

restated more compactly as:∨
𝑖∈𝐼

(𝛼𝑖 ? q𝑖) @
∨
𝑗∈ 𝐽

(𝛽 𝑗 ? p𝑗)
def

=
∨

𝑖∈𝐼 , 𝑗∈ 𝐽 ,SAT(𝛼𝑖⊓𝛽 𝑗 )
(𝛼𝑖⊓𝛽 𝑗 ? q𝑖 @ p𝑗)

where cleaning (SAT(𝛼𝑖⊓𝛽 𝑗 )) is embedded. Observe that ∅ @ p = q @ ∅ = ∅, so

(𝛼 ? q) @ (𝛽 ? p)= (𝛼 ? (𝛽 ? q @ p : q @ ∅) : (𝛽 ? ∅ @ p : ∅ @ ∅)) � (𝛼 ? (𝛽 ? q @ p)) � (𝛼⊓𝛽 ? q @ p)

This means that, also the number of satisfiability tests is 𝑂 ( |𝑁1 | |𝑁2 |), that eliminate unreachable

states. In stark contrast, a translation to classical NBWs in 𝑂 (2 |𝑁1 |+|𝑁2 | ) due to the mintermization or
bitblasting needed to establish the finite alphabet.

6 LTL Modulo Theories
Here we lift classical linear temporal logic (LTL) to be modulo (Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ), or LTL⟨A⟩,
via symbolic derivatives that translate LTL⟨A⟩ formulas into transition terms. We then utilize the

algorithms developed for ABWA for decision procedures of LTL⟨A⟩. Let 𝛼 ∈ A and 𝜑 ∈ LTL⟨A⟩.

𝜑 ::= 𝛼 | ¬𝜑 | 𝜑1 ∨ 𝜑2 | 𝜑1 ∧ 𝜑2 | X𝜑 | 𝜑1 U 𝜑2 | 𝜑1 R 𝜑2

where X (Next), U (Until), and R (Release), are modal operators. The true formula is ⊤ and the false
formula is ⊥ from A. The following standard abbreviations are also used: 𝜑 → 𝜓

def

= ¬𝜑 ∨ 𝜓 ,
F𝜓 def

= ⊤ U 𝜓 , and G𝜓 def

= ⊥ R 𝜓 , where F is Finally (Eventually) and G is Globally (Always).

6.1 Semantics
A stream𝑤 ∈ Σ𝜔 is a model of 𝜑 ∈ LTL⟨A⟩,𝑤 |= 𝜑 , when the following holds, where 𝛼 ∈ A:

𝑤 |= 𝛼
def

= 𝑤0 ⊨ 𝛼 (9)

𝑤 |= 𝜑 ∧𝜓 def

= 𝑤 |= 𝜑 ∧𝑤 |= 𝜓 𝑤 |= 𝜑 ∨𝜓 def

= 𝑤 |= 𝜑 ∨𝑤 |= 𝜓 𝑤 |= ¬𝜑 def

= 𝑤 ̸ |= 𝜑 (10)

𝑤 |= X𝜓 def

= tail(𝑤) |= 𝜓 (11)

𝑤 |= 𝜑 U 𝜓 def

= ∃ 𝑗 : drop( 𝑗,𝑤) |= 𝜓 ∧ ∀𝑖< 𝑗 : drop(𝑖,𝑤) |= 𝜑 (12)

𝑤 |= 𝜑 R 𝜓 def

= ∀𝑗 : drop( 𝑗,𝑤) |= 𝜓 ∨ ∃ 𝑗 : drop( 𝑗,𝑤) |= 𝜑 ∧ ∀𝑖≤ 𝑗 : drop(𝑖,𝑤) |= 𝜓 (13)

ℒ(𝜑) def

= {𝑤 ∈ Σ𝜔 | 𝑤 |= 𝜑} 𝜑 ≡ 𝜓 def

= ℒ(𝜑) = ℒ(𝜓 ) (14)

The rules (12) and (13) are duals of each other, either one suffices as the main definition. Observe

that if 𝛼 ∈ A then𝑤 |= ¬𝛼 ⇔𝑤 ̸ |= 𝛼 ⇔𝑤0 ⊭ 𝛼 ⇔𝑤0 ⊨ 𝛼
𝑐 ⇔𝑤 |= 𝛼𝑐 .
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The following examples illustrate some cases of LTL⟨A⟩ modulo various A. Example 6.1 il-

lustrates – at a very abstract level – the well-known connection of integrating SAT solving into

symbolic LTL, e.g., by using BDDs [Wulf et al. 2008].

Example 6.1. Classical LTL over a set of atomic propositions 𝑃 is LTL⟨A⟩ whereA is an algebra

of Boolean combinations over 𝑃 , where Σ = 2
𝑃
and A = B(𝑃), and where satisfiability can be

implemented using a SAT solver. An element 𝑑 ∈ Σ such that 𝑑 ⊨ 𝛼 defines a truth assignment to
𝑃 that makes 𝛼 true. For example, if 𝑃 = {𝑝𝑖 }𝑖<7 and 𝛼 = 𝑝6 ⊓ 𝑝5 ⊓ 𝑝4 ⊓ (𝑝3 ⊔ ((𝑝𝑐2) ⊓ 𝑝1)) then if

𝑤 ∈ Σ𝜔 is such that 𝑤0 = {𝑝1, 𝑝4, 𝑝5, 𝑝6} and 𝑤1 = {𝑝1, 𝑝2, 𝑝4, 𝑝5, 𝑝6} then 𝑤 |= 𝛼 but tail(𝑤) ̸|= 𝛼 .

Thus, for example,𝑤 ̸ |= G𝛼 . ⊠

Unlike in Example 6.1, in Example 6.2 Σ is infinite.

Example 6.2. Consider LTL modulo the EBA (Σ,A, |=,⊥,⊤,∨,∧,¬) of SMT formulasA that can

be implemented using an SMT solver. Here Σ is the set of interpretations to uninterpreted constants
or variables. Let 𝑥 be a variable of type real. Then (𝑥 < 1) R (0 < 𝑥) states that 𝑥 must remain

positive until 𝑥 < 1. E.g., (𝑥 ↦→1) (𝑥 ↦→ 1

2
) (𝑥 ↦→0)𝜔 |= (𝑥 < 1) R (0 < 𝑥). ⊠

6.2 Vardi Derivatives of LTL Modulo Theories
Here we show how the semantics of LTL⟨A⟩, or LTL for short, can be realized via transition terms.

The key observation here is that a concrete derivative (i.e., for a given symbol 𝑎 ∈ Σ) is not actually
constructed but maintained in a symbolic form as a transition term. Let 𝛼 ∈ A, and 𝜑,𝜓 ∈ LTL.
The (symbolic) derivative of an LTL formula is defined as a term in TTerm⟨A, LTL⟩:

𝜕(𝛼) def

= (𝛼 ?⊤ :⊥) (15)

𝜕(𝜑 ∧𝜓 ) def

= 𝜕(𝜑) ∧ 𝜕(𝜓 ) (16)

𝜕(𝜑 ∨𝜓 ) def

= 𝜕(𝜑) ∨ 𝜕(𝜓 ) (17)

𝜕(¬𝜑) def

= ¬𝜕(𝜑) (18)

𝜕(X𝜓 ) def

= 𝜓 (19)

𝜕(𝜑 U 𝜓 ) def

= 𝜕(𝜓 ) ∨ (𝜕(𝜑) ∧ (𝜑 U 𝜓 )) (20)

𝜕(𝜑 R 𝜓 ) def

= 𝜕(𝜓 ) ∧ (𝜕(𝜑) ∨ (𝜑 R 𝜓 )) (21)

Symbolic derivatives, as given above, lift the construction in [Vardi 1995] (see also [Kupferman

2018, Theorem 24]) as to be modulo A. We use the following simplified rules for G and F (where
⊥ ∨ 𝜙 � 𝜙 and ⊤ ∧ 𝜙 � 𝜙 are applied implicitly): 𝜕(G𝜓 ) def

= 𝜕(𝜓 ) ∧ G𝜓 and 𝜕(F𝜓 ) def

= 𝜕(𝜓 ) ∨ F𝜓 .
Correctness of the derivation rules will follow as a special case of Theorem 4 in Section 7.

We now link derivatives formally with ABWs. We write LTL+ for the positive formulas in LTL
where ¬ does not occur. This is a standard normal form assumption and every formula in LTL
can be translated into LTL+ of the same size if members of A are treated as units. The particular

aspect with modulo A is that complement is propagated into A, i.e., for 𝛼 ∈ A, the LTL formula

¬𝛼 becomes the predicate 𝛼𝑐 in A.

Definition 6.3 (LTL+⟨A⟩). The positive fragment of LTL⟨A⟩ is obtained by eliminating any

explicit use of ¬ through de Morgan’s laws and the standard equivalence preserving rules where

𝛼 ∈ A and 𝜑,𝜓 ∈ LTL: ¬𝛼 ≡ 𝛼𝑐 , ¬X𝜑 ≡ X¬𝜑 , ¬(𝜑 U 𝜓 ) ≡ ¬𝜑 R ¬𝜓 , and ¬(𝜑 R 𝜓 ) ≡ ¬𝜑 U ¬𝜓 .

Definition 6.4 (𝑀𝜙 for 𝜙 ∈ LTL+⟨A⟩). For 𝜙 ∈ LTL+⟨A⟩ let 𝑄𝜙 denote the set containing ⊥ and

⊤ and all non-Boolean subformulas of 𝜙 , i.e., predicates inA, and all modal formulas. Let 𝜚𝜙 denote

𝜆𝑞.𝜕(𝑞) for 𝑞 ∈ 𝑄𝜙 . Let 𝐹𝜙 contain all the R-formulas and ⊤ in 𝑄𝜙 . Then𝑀𝜙
def

= (A, 𝑄𝜙 , 𝜙, 𝜚𝜙 , 𝐹𝜙 ).
Observe that 𝜚𝜙 : 𝑄𝜙 → TTerm⟨A,B+(𝑄𝜙 )⟩.
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The key result from [Vardi 1995] ([Kupferman 2018, Theorem 24]) is lifted as to be modulo A.

Theorem 2 (Vardi derivatives modulo theories). ∀𝜙 ∈ LTL+⟨A⟩ : ℒ(𝑀𝜙 ) = ℒ(𝜙)

Thus, the following invariant is preserved by all states𝜓 of𝑀𝜙 becauseℒ𝑀𝜙
(𝜓 ) = ℒ(𝑀𝜓 ).

Corollary 2 (LTL invariance). ∀𝜙 ∈ LTL+⟨A⟩ : ∀𝜓 ∈ 𝑄𝑀𝜙
: ℒ𝑀𝜙

(𝜓 ) = ℒ(𝜓 )

Some states may become unreachable from 𝜙 through rewrites of 𝜚𝜙 , that the definition of𝑀𝜙

does not directly reflect, e.g., 𝛼 and 𝛼𝑐 are not relevant as states in Example 6.5.

Example 6.5. Let 𝜙 = G(F𝛼 ∧ F𝛼𝑐 ), where 𝛼 ∈ A is such that 𝛼 . ⊥ and 𝛼 . ⊤. Then the

transition function 𝜚 = 𝜚𝜙 has the following reachable states and terms:

𝜚 (F𝛼) = (𝛼 ?⊤ : F𝛼), 𝜚 (F𝛼𝑐 ) = (𝛼𝑐 ?⊤ : F𝛼𝑐), 𝜚 (𝜙) = (𝛼 ? F𝛼𝑐 ∧ 𝜙 : F𝛼 ∧ 𝜙), 𝜚 (⊤) = ⊤
where 𝜕(F𝛼) � (𝜕(𝛼) ∨ F𝛼) = (𝛼 ?⊤ ∨ F𝛼 :⊥ ∨ F𝛼) � (𝛼 ?⊤ : F𝛼) (similarly for 𝜕(F𝛼𝑐 )), and

𝜕(𝜙) � (𝜕(F𝛼 ∧ F𝛼𝑐 ) ∧𝜙) = (𝜕(F𝛼) ∧ 𝜕(F𝛼𝑐 ) ∧𝜙)
� ((𝛼 ?⊤ : F𝛼)∧ (𝛼𝑐 ?⊤ : F𝛼𝑐)∧𝜙)
� (𝛼 ? (𝛼𝑐 ?𝜙 : F𝛼𝑐 ∧𝜙) : (𝛼𝑐 ? F𝛼 ∧𝜙 : F𝛼 ∧ F𝛼𝑐 ∧𝜙))
� (𝛼 ? F𝛼𝑐 ∧𝜙 : F𝛼 ∧𝜙)

The resulting𝑀𝜙 is shown in Figure 1 with 𝑞0 = 𝜙 , 𝑞1 = F𝛼 and 𝑞2 = F𝛼𝑐 . ⊠

The following example illustrates the impact of cleaning modulo different element theories A
and how this is reflected in the computation of𝑀𝜙 .

Example 6.6. ConsiderA with an SMT solver, let 𝑥 be of type integer, and let 𝜙 = (𝑥<1) R (0<𝑥),
stating that the condition that 𝑥 > 0 is released when 𝑥 < 1 becomes true. Then

𝜕(𝜙) � 𝜕(0<𝑥) ∧ (𝜕(𝑥<1) ∨ 𝜙) = (0<𝑥 ?⊤ :⊥) ∧ ((𝑥<1 ?⊤ :⊥) ∨ 𝜙)
� (0<𝑥 ?⊤ :⊥) ∧ (𝑥<1 ?⊤ :𝜙) � (0<𝑥 ? (𝑥<1 ?⊤ :𝜙) :⊥) � (0<𝑥 ?𝜙 :⊥)

where UNSAT((0<𝑥)⊓(𝑥<1)) is used for cleaning. I.e., in this case (𝑥<1) R (0<𝑥) ≡ G(0<𝑥). ⊠

6.3 Alternation Elimination for LTL Modulo Theories
Combined together, Theorem 1 and Corollary 2 show the decidability of LTL⟨A⟩ for decidable A.

They allow us to directly use the Æ algorithm on the transition terms resulting from the symbolic

derivatives of LTL⟨A⟩. This will produce a nondeterministic Büchi automata from an LTL formula

in a lazy manner, while safely applying many LTL-based rewrites.

Theorem 3 (LTL invariance of Æ). ∀𝜙 ∈ LTL+⟨A⟩ : ∀𝑞 ∈ 𝑄Æ(𝑀𝜙 ) : ℒÆ(𝑀𝜙 ) (𝑞) = ℒ(⋏𝑞)

Proof. Let 𝑀 = 𝑀𝜙 and 𝑁 = Æ(𝑀). Fix 𝑞 = ⟨𝑈 ,𝑉 ⟩ ∈ 𝑄𝑁 . We show that ℒ𝑁 (𝑞) = ℒ(⋏𝑞).
We have that ℒ𝑁 (𝑞) = ℒ𝑀 (⋏𝑞) =

⋂
𝜓 ∈𝑈∪𝑉 ℒ𝑀 (𝜓 ) =

⋂
𝜓 ∈𝑈∪𝑉 ℒ(𝜓 ) = ℒ(⋏𝑞) where the first

equality holds by Theorem 1 and the third equality holds by Corollary 2 because𝑈 ∪𝑉 ⊆ 𝑄𝑀 . □

States ⟨𝑈 ,𝑉 ⟩ in 𝑄Æ(𝑀𝜙 ) can be reduced by Lemma 3. E.g., for any 𝜑 , if 𝜑, G(𝜑 ∧ _) ∈ 𝑉 then

𝜑 can be eliminated from 𝑉 because 𝜕(𝜑 ∧ G(𝜑 ∧ _)) � 𝜕(G(𝜑 ∧ _)), which means that the

derivative (transition term) does not even need to be computed in this case, in order to know that

Lemma 3 can be applied. In fact, this exact situation appeared twice implicitly in Example 5.1, where

𝑀 = 𝑀G(F𝛼∧F𝛼𝑐 ) . Many similar rules can be used, where the one illustrated here is an instance of

the subsumption rule in [Somenzi and Bloem 2000, ≤]. Such rules would clearly be out of reach if

the LTL invariance property had been lost in translation. A full analysis of which rules in [Somenzi

and Bloem 2000] preserve LTL invariance of Æ is beyond the scope of this work.
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7 LTL Extended with Regexes Modulo Theories
We now show the power of symbol derivatives by using them to combine the following two

languages into one:

✓ ERE⟨A⟩, with derivatives summarized in Section 7.1;

✓ LTL⟨A⟩, as given in the previous section.

We first work with finite words in Σ∗, and later lift the semantics to infinite words in Σ𝜔 when we

extend LTL⟨A⟩ with ERE⟨A⟩ in the combined language RLTL⟨A⟩ in Section 7.3.

Our focus here is on the classical subset of the extended regular expression operators supported

in SPOT [Duret-Lutz 2024] and PSL [Eisner and Fisman 2006]. The language RLTL⟨A⟩ also has

regex complement and 𝜔-closure, which are not in SPOT/PSL but can be supported naturally

with transition terms. In Section 7.7 we lift 𝜔-regular languages to be modulo A and show that

RLTL+⟨A⟩ captures them precisely.

7.1 Derivatives of ERE as Transition Regexes
Recall the definition of ERE⟨A⟩ from Section 2.5 and let 𝑅 ∈ ERE⟨A⟩. The property nullable(𝑅)
means that 𝜖 � 𝑅 and is maintained as flag of each regex. Recall that 𝑣 � 𝑅 ⇔ 𝑣 ∈ L(𝑅).

nullable(𝛼) def

= false nullable(𝜀) def

= true nullable(𝑅∗) def

= true nullable(~𝑅) def

= ¬ nullable(𝑅)
nullable(𝑅1⋓𝑅2) def

= nullable(𝑅1) ∨ nullable(𝑅2) nullable(𝑅1⋒𝑅2) def

= nullable(𝑅1) ∧ nullable(𝑅2)

The derivative of 𝑅 ∈ ERE is denoted by 𝛿 (𝑅) ∈ TTerm⟨A, ERE⟩ [Stanford et al. 2021]. Recall

that (1) and (2) automatically lift all the regex operators to TTerm⟨A, ERE⟩, which means that the

algebra of lift rules in [Stanford et al. 2021, Section 4.1] (dealing with incremental propagation of

the operators in transition regexes) is irrelevant here.

𝛿 (𝜀) def

= ⊥ 𝛿 (𝑅1 ⋓ 𝑅2) def

= 𝛿 (𝑅1) ⋓ 𝛿 (𝑅2)
𝛿 (𝛼) def

= (𝛼 ? 𝜀 :⊥) 𝛿 (𝑅1 ⋒ 𝑅2) def

= 𝛿 (𝑅1) ⋒ 𝛿 (𝑅2)
𝛿 (~𝑅) def

= ~𝛿 (𝑅)
𝛿 (𝑅1 · 𝑅2) def

=

{
𝛿 (𝑅1)·𝑅2 ⋓ 𝛿 (𝑅2), if nullable(𝑅1);
𝛿 (𝑅1)·𝑅2, otherwise.𝛿 (𝑅∗) def

= 𝛿 (𝑅)·𝑅∗

(22)

In particular, the definition of 𝛿 (𝛼) = (𝛼 ? 𝜀 :⊥) differs crucially from 𝜕(𝛼) = (𝛼 ?⊤ :⊥) in

LTL⟨A⟩. Moreover, ¬(𝛼 ?⊤ :⊥) � (𝛼 ?⊥ :⊤) while ~(𝛼 ?⊤ :⊥) � (𝛼 ? 𝜀 ⋓ ⊤⊤+ :⊤∗). In
other words, while structurally similar, the derivatives (and their semantics) are fundamentally

different.

The union operation ⋓ over ERE is treated as an ACI operation in [Stanford et al. 2021], as the

critical part of � over ERE, which implies that𝑀𝑅 , as defined next, is well-defined as a symbolic

DFA modulo A (DFAA ) by having a finite state space.

Definition 7.1 (𝑀𝑅 for 𝑅 ∈ ERE⟨A⟩). 𝑀𝑅 = (A, 𝑄, 𝑅, 𝜚, 𝐹 ) where 𝑄 is the least set of states

containing 𝑅 as the initial state and 𝜚 : 𝑄 → TTerm⟨A, 𝑄⟩ is the transition function such that

𝜚 (𝑞) � 𝛿 (𝑞) and lvs(𝜚 (𝑞)) ⊆ 𝑄 . 𝐹 = {𝑞 ∈ 𝑄 | nullable(𝑞)}.

Let 𝑀 = 𝑀𝑅 . For all 𝑎 ∈ Σ, 𝑢 ∈ Σ∗ and 𝑞 ∈ 𝑄 let
ˆ𝛿 (𝜖, 𝑞) def

= 𝑞 and
ˆ𝛿 (𝑎::𝑢, 𝑞) def

= ˆ𝛿 (𝑢, 𝛿 (𝑞) [𝑎]). For
all 𝑞 ∈ 𝑄 let L𝑀 (𝑞) def

= {𝑢 ∈ Σ∗ | ˆ𝛿 (𝑢, 𝑞) ∈ 𝐹 }. Lemma 4 is implied by [Stanford et al. 2021, Theorem

4.3] and [Brzozowski 1964, Theorem 3.1].

Lemma 4 ( [Stanford et al. 2021]). ∀𝑞 ∈ 𝑄 : L𝑀 (𝑞) = L(𝑞) ∧ L(𝜚 (𝑞) [𝑎]) = D𝑎 (L(𝑞)).

A state 𝑞 is alive if L𝑀 (𝑞) ≠ ∅ else dead. Observe that a state ˆ𝛿 (𝑢, 𝑅) is alive⇔ ∃𝑥 : 𝑢𝑥 � 𝑅.
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7.2 One Step Lookahead
For 𝑅 ∈ ERE let OneStep(𝑅) be a predicate in A that denotes L(𝑅) ∩ Σ. The predicate OneStep(𝑅)
plays a key role in the definition of derivatives for RLTL⟨A⟩ below, as a one-step lookahead such

that, for all 𝑎 ∈ Σ, 𝑎 ⊨ OneStep(𝑅) ⇔ 𝑎 � 𝑅.

OneStep(𝑅) def

= OneStep′ (𝛿 (𝑅))
OneStep′ (𝑅) def

= if nullable(𝑅) then ⊤ else ⊥
OneStep′ ((𝛼 ? 𝑓 :𝑔)) def

= (𝛼 ⊓ OneStep′ (𝑓 )) ⊔ (𝛼𝑐 ⊓ OneStep′ (𝑔))

In particular, OneStep(𝑅) ≡ ⊥ ⇔ L(𝑅) ∩ Σ = ∅. The predicate OneStep(𝑅) is often used when 𝛿 (𝑅)
is used. Therefore, the predicate OneStep′ (𝑓 ) is ideally cached (and simplifed to ⊥ when unsat)

with each transition regex 𝑓 when 𝑓 is constructed.

Example 7.2. We construct the transition terms of𝑀(𝛼𝛽 )+, where 𝛼, 𝛽 ∈ A, for all 𝑟 ∈ 𝑄𝑀(𝛼𝛽 )+ .

𝑟 𝛿 (𝑟 ) OneStep(𝑟 ) nullable(𝑟 ) DFAA 𝑀(𝛼𝛽 )+
(𝛼𝛽)+ (𝛼 ? 𝛽 (𝛼𝛽)∗) ⊥ false

𝛼

𝛽

𝛼(𝛼𝛽)+ 𝛽 (𝛼𝛽)∗ (𝛼𝛽)∗𝛽 (𝛼𝛽)∗ (𝛽 ? (𝛼𝛽)∗) 𝛽 false
(𝛼𝛽)∗ (𝛼 ? 𝛽 (𝛼𝛽)∗) ⊥ true

OneStep(𝑟 ) is shown for each state above. (We typically omit the state ⊥ to avoid clutter.) ⊠

7.3 RLTL
RLTL⟨A⟩ extends LTL⟨A⟩ with ERE⟨A⟩. Let 𝜙 ∈ RLTL⟨A⟩, 𝑅 ∈ ERE⟨A⟩, and 𝛼 ∈ A.

𝜙 ::= 𝛼 | ¬𝜙 | 𝜙 ∨ 𝜙 ′ | 𝜙 ∧ 𝜙 ′ | X𝜙 | 𝜙 U 𝜙 ′ | 𝜙 R 𝜙 ′ | 𝑅 ^→ 𝜙 | 𝑅 □→ 𝜙 | {𝑅} | !{𝑅} | 𝑅𝜔

The operator ^→ is existential suffix implication, □→ is (universal) suffix implication, {𝑅} is weak
closure, !{𝑅} is negated weak closure, and 𝑅𝜔 is 𝜔-closure. The semantics of 𝜙 ∈ RLTL is a conser-

vative extension of LTL and consistent with the semantics in SPOT [Duret-Lutz 2024], except that

if 𝑅 is nullable then in RLTL the formula {𝑅} (resp. !{𝑅}) is equivalent to ⊤ (resp. ⊥) and 𝑅𝜔 ,~𝑅
are not supported in PSL/SPOT. The SPOT formula {𝑅} (!{𝑅}) maps to {𝑅 ⋒ ⊤+} (!{𝑅 ⋒ ⊤+}) in
RLTL. Definitions (9–14) carry over to RLTL and we add the new definitions:

𝑤 |= 𝑅 ^→ 𝜙
def

= ∃ 𝑖 : take(𝑖 + 1,𝑤) � 𝑅 ∧ drop(𝑖,𝑤) |= 𝜙 (23)

𝑤 |= 𝑅 □→ 𝜙
def

= ∀ 𝑖 : take(𝑖 + 1,𝑤) � 𝑅 ⇒ drop(𝑖,𝑤) |= 𝜙 (24)

𝑤 |= {𝑅} def

= ∃ 𝑖 : take(𝑖,𝑤) � 𝑅 ∨ ∀ 𝑖 > 0 : ∃ 𝑥 : take(𝑖,𝑤) · 𝑥 � 𝑅 (25)

𝑤 |= !{𝑅} def

= 𝑤 ̸ |= {𝑅} (26)

𝑤 |= 𝑅𝜔
def

= 𝑤 ∈ L(𝑅)𝜔 (27)

We use the relations 𝑣 ≺𝜖 𝑤 def

= ∃ 𝑖 : 𝑣 = take(𝑖,𝑤) and 𝑣 ≺ 𝑤
def

= ∃ 𝑖 > 0 : 𝑣 = take(𝑖,𝑤) below.

Example 7.3. Let 𝑅 = 𝛼∗𝛽 where ⟦𝛼⟧ = {𝑎} and ⟦𝛽⟧ = {𝑏}. Then �𝑢 ≺𝜖 𝑎𝜔 : 𝑢 ∈ L(𝑅), however
∀𝑢 ≺ 𝑎𝜔 : ∃ 𝑥 : 𝑢𝑥 ∈ L(𝑅) (namely for 𝑥 = 𝑏) – i.e., for all 𝑢 ≺ 𝑎𝜔 , ˆ𝛿 (𝑢, 𝑅) is alive. So 𝑎𝜔 |= {𝑅}. ⊠

It follows from the definitions that 𝑅 □→ 𝜙 ≡ ¬(𝑅 ^→ ¬𝜙) and trivially that !{𝑅} ≡ ¬{𝑅}, i.e.,
(24) and (26) are duals of (23) and (25).

Definition 7.4 (RLTL+). The positive fragment of RLTL is obtained by using Definition 6.3, and

for 𝑅 ∈ ERE and 𝜑,𝜓 ∈ RLTL: ¬(𝑅 ^→ 𝜑) ≡ 𝑅 □→ ¬𝜑 , ¬(𝑅 □→ 𝜑) ≡ 𝑅 ^→ ¬𝜑 , ¬{𝑅} ≡ !{𝑅},
and ¬!{𝑅} ≡ {𝑅}. RLTL+ disallows ¬(𝑅𝜔 ).
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Example 7.5. Recall ~𝑅 □→ ⊥ from Section 1.3 that belongs to RLTL+. So

𝑤 |= ~𝑅 □→ ⊥ ⇔ ∀ 𝑖 : take(𝑖 + 1,𝑤) ⊯ ~𝑅 ∨ drop(𝑖,𝑤) |= ⊥ ⇔ ∀ 𝑖 > 0 : take(𝑖,𝑤) ⊯ ~𝑅
⇔ ∀ 𝑖 > 0 : take(𝑖,𝑤) � 𝑅

and thus 𝑤 |= ~𝑅 □→ ⊥ ⇔ ∀ 𝑣 ≺ 𝑤 : 𝑣 � 𝑅. E.g., if a regex 𝑟 is bounded (only accepts words of

bounded length, any regex that is both ∗-free and ~-free is bounded) and ⌊𝑟⌋ is the prefix closure regex
of 𝑟 , then ~(𝑟∗·⌊𝑟⌋) □→ ⊥ ≡ 𝑟𝜔 . Since ¬(𝑟𝜔 ) is not supported in RLTL+⟨A⟩, ~(𝑟∗·⌊𝑟⌋) ^→ ⊤ can

be used instead of ¬(𝑟𝜔 ) if 𝑟 is bounded. ⊠

For𝑀 ∈ ABWA and 𝜙 ∈ RLTL⟨A⟩ let𝑀 |= 𝜙
def

= ℒ(𝑀) ⊆ ℒ(𝜙).

7.4 Trace Analysis of Cloud Services
Our primary application of RLTL⟨A⟩ is to analyze traces of cloud services. The elements in Σ are

called actions in this context, that are pairs (req, res) of JSON values where req represents an http
request and res represents an http response. SMT solvers like Z3 [de Moura and Bjørner 2008] can

natively reason about JSON values as they can be represented by nested data types.

Note that a JSON value here is a structured representation of an http request or response that
is itself just flat text. The basic fields of a JSON value are usually strings, that are sequences of
characters of type Unicode in Z3. JSON fields are often associated with additional type constraints

in form of regular expressions, e.g., that a key field must be a nonempty string of digits, so it must

match the regex \d+. Thus, regexes modulo Unicode are part ofA, while regexes moduloA are used

to specify action patterns in RLTL⟨A⟩, as illustrated below.

Since cloud services run continuosly their trace semantics is naturally described in terms of

action streams. (In reality, there can also be several requests in-flight simultaneously, but here we

let each request req be paired with an immediate response res.)
A model of the cloud service is given or is being learned as an NBWA 𝑀. If we have some RLTL

property 𝜓 that is expected to hold, i.e., 𝑀 |= 𝜓 is expected, but ℒ(𝑀 × Æ(𝑀¬𝜓 )) ≠ ∅ we can
extract a counterexample from𝑀 ×Æ(𝑀¬𝜓 ) . If the counterexample turns out to be spurious, by

evaluating it against the actual service, it can be used to refine𝑀 (during learning).

For example, in some services requests and responses must have equal IDs in the same action, in

otherwords𝑀 |= G(ID(req) = ID(res))must hold. Let fail denote failed actions and let succ = fail
𝑐
.

A failure typically means that res contains an http status code in the range ≥ 400, but it may also

be a request specific error message, e.g., that a null reference exception was thrown, or that the

etag values in req and res do not match when expected to match for certain operations.

We consider a subset of the Azure App Configuration service [Microsoft 2023] for basic key

operations. For a fixed key, we use the following predicates on req: d = the operation is DeleteKey;
l = the operation is LockKey; u = the operation is UnlockKey. Then the following formula, say𝜓 ,

⊤∗·(l ⊓ succ)·(u𝑐 ⊔ fail)∗·d □→ fail

states that a locked key cannot be deleted. It describes the following action pattern: if at some point

the key is successfully locked (l ⊓ succ) and there are no subsequent successful unlock actions

(u𝑐 ⊔ fail)∗ before a delete request d then d must fail. Observe that d and fail in𝜓 apply to the

same action𝑤𝑖 in any action stream𝑤 – the last action in take(𝑖 + 1,𝑤) is also the first action in

drop(𝑖,𝑤) in the semantics of □→ (24).𝑀¬𝜓 is illustrated in Figure 2.

Patterns such as the one above are often most naturally expressed by using regexes and suffix

implications, that also illustrates a core advatage over the LTL⟨A⟩ fragment. It is often unclear

and difficult to decide if a property can or cannot be expresses in LTL⟨A⟩. Even when a property

can be expressed in LTL⟨A⟩ it can be difficult to understand the resulting formula. As it happens,
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⊤

l⊓ succ

(d⊓ succ)𝑐 ⊓ (u𝑐 ⊔ fail) ⊤
d⊓ succ⊤∗·(l ⊓ succ)·(u𝑐 ⊔ fail)∗·d ^→ succ (u𝑐 ⊔ fail)∗·d ^→ succ ⊤

Fig. 2. 𝑀¬𝜓 where𝜓 = ⊤∗·(l ⊓ succ)·(u𝑐 ⊔ fail)∗·d □→ fail as in Section 7.4.

the formula𝜓 above can be written as the following equivalent formula in LTL⟨A⟩, say 𝜙 ,
G((l ∧ succ) → X((u ∧ succ) R (d→ fail)))

stating that, whenever the key has been successfully locked then, consequently, successfull unlock

releases the condition that delete fails. The LTL⟨A⟩ symbolic derivative of ¬𝜙 is as follows:

𝜕(¬𝜙) � (l ⊓ succ ? ((u→ fail) U (d ∧ succ)) ∨ ¬𝜙 :¬𝜙)
𝜕((u→ fail) U (d ∧ succ)) � (d ⊓ succ ?⊤ : (u𝑐 ⊔ fail ? (u→ fail) U (d ∧ succ)))

The automaton𝑀¬𝜙 is illustrated in Figure 3 and is clearly equivalent to𝑀¬𝜓 in Figure 2.

⊤

l⊓ succ

(d⊓ succ)𝑐 ⊓ (u𝑐 ⊔ fail) ⊤
d⊓ succ

F(l ∧ succ ∧ X((u→ fail) U (d ∧ succ))) (u→ fail) U (d ∧ succ) ⊤

Fig. 3. 𝑀¬𝜙 where 𝜙 = G((l ∧ succ) → X((u ∧ succ) R (d→ fail))) as in Section 7.4.

Observe that the predicates here are not just propositions but predicates over the underlying

JSON values. For example, a request cannot simultaneously be a delete operation and an unlock

operation, i.e., UNSAT(d ∧ u). Therefore, any bitblasting to propositions, say 𝑝d and 𝑝u in SPOT,

would require the theory constraint ¬(𝑝d ∧ 𝑝u), among all the other required theory constraints.

7.5 Derivatives of RLTL
Derivatives for RLTL are defined as terms in TTerm⟨A,RLTL⟩ reusing (15–21) and the rules:

𝜕(𝑅 ^→ 𝜙) def

= (OneStep(𝑅) ? 𝜕(𝜙) :⊥) ∨ (𝛿 (𝑅) ^→ 𝜙) (28)

𝜕(𝑅 □→ 𝜙) def

= (OneStep(𝑅) ? 𝜕(𝜙) :⊤) ∧ (𝛿 (𝑅) □→ 𝜙) (29)

𝜕({𝑅}) def

= if nullable(𝑅) then ⊤ else {𝛿 (𝑅)} (30)

𝜕(!{𝑅}) def

= if nullable(𝑅) then ⊥ else !{𝛿 (𝑅)} (31)

𝜕(𝑅𝜔 ) def

= 𝜕(𝑅 ^→ X𝑅𝜔 ) (32)

where 𝑟 ^→𝜙 , 𝑟 □→𝜙 , {𝑟}, and !{𝑟} are lifted to TTerm⟨A,RLTL⟩ by (2). Rules (28–31) seamlessly

combine the derivatives of LTL (15–21) with derivatives of ERE (22). Correctness is proved in

Theorem 4. Several derived laws can be inlined as immediate rewrites into the definition of 𝜕, such

as (⊥ ^→ 𝜙) � (𝜀 ^→ 𝜙) � {⊥} � ⊥, and if 𝑅 is nullable then {𝑅} � ⊤. Analogous rewrites
apply to their duals □→ and !{𝑅}. Note that if OneStep(𝑅) ≡ ⊥ then (OneStep(𝑅) ? 𝜕(𝜙) :⊥) � ⊥
and (OneStep(𝑅) ? 𝜕(𝜙) :⊤) � ⊤ whereby the definitions (28) and (29) simplify accordingly.

Let Acc(RLTL+) denote the subset of all the following formulas of RLTL+: ⊤, all R formulas, all

□→ formulas, all {𝑅} formulas where 𝑅 is alive, all !{𝑅} formulas where 𝑅 is dead, and all 𝑅𝜔

formulas.

Definition 7.6 (𝑀𝜙 for 𝜙 ∈ RLTL+⟨A⟩). 𝑀𝜙 = (A, 𝑄, 𝜙, 𝜚,𝑄 ∩ Acc(RLTL+)) where 𝑄 ⊆ RLTL+

is the least set such that 𝜙 ∈ 𝑄 and if 𝑞 ∈ 𝑄 then 𝜚 (𝑞) � 𝜕(𝑞) and if 𝑝 is a non-Boolean subformula

of a leaf of 𝜚 (𝑞) then 𝑝 ∈ 𝑄 .
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𝑀𝜙 is well-defined (𝑄 above is finite) because all the𝑀𝑅 are finite by Lemma 4. In contrast to LTL
derivatives, where all the original subformulas suffice, for 𝜙 ∈ RLTL,𝑀𝜙 also gets new formulas in

suffix implications and closures, e.g., in every leaf 𝑟 ^→ 𝜓 of 𝛿 (𝑅) ^→ 𝜓 , 𝑟 is some leaf of 𝛿 (𝑅)
and 𝑟 ^→ 𝜓 is typically not a subformula of 𝜙 . (See Figure 2.)

Example 7.7. Consider the RLTL formula 𝜓 = 𝛼 ^→ 𝜙 with 𝜙 = G(F𝛼 ∧ F𝛼𝑐 ) and recall

Example 6.5. Here 𝛿 (𝛼) = (𝛼 ? 𝜀). Since OneStep(𝛼) = 𝛼 , by using (28), we get that

𝜕(𝜓 ) = (𝛼 ? 𝜕(𝜙))∨(𝛿 (𝛼) ^→𝜙) � (𝛼 ? 𝜕(𝜙))∨(𝛼 ? (𝜀 ^→𝜙))
� (𝛼 ? 𝜕(𝜙))∨(𝛼 ?⊥) � (𝛼 ? 𝜕(𝜙))
� (𝛼 ? (𝛼 ? F𝛼𝑐 ∧ 𝜙 : F𝛼 ∧ 𝜙)) � (𝛼 ? F𝛼𝑐 ∧ 𝜙)

𝛼
𝛼𝑐

𝛼𝑐

𝛼

𝛼

𝛼𝑐

𝛼

⊤
∧

∧

∧
𝜓 𝜙

F𝛼

F𝛼𝑐

⊤

The complete ABWA is depicted on the right. Æ can be used to obtain an NBWA in this case. ⊠

Example 7.8. Let 𝛼, 𝛽,𝛾 ∈ A and consider 𝜙 = (𝛼𝛽)+ ^→ G𝛾 . The transition terms that arise

from 𝜙 give rise here to the ABW 𝑀𝜙 as shown below, where we reused the regex derivatives from

the earlier Example 7.2. Observe that𝑀𝜙 also happens to be nondeterministic because conjunctions

do not arise. Simplifications are directly inlined for ⊥ as the zero of ∧ and the unit of ∨.
𝑞 𝜕(𝑞) NBWA 𝑀𝜙

𝑞0 = (𝛼𝛽)+ ^→ G𝛾
(⊥ ? 𝜕(G𝛾)) ∨ ((𝛼 ? 𝛽 (𝛼𝛽)∗) ^→ G𝛾)
� (𝛼 ? 𝛽 (𝛼𝛽)∗ ^→ G𝛾)

𝛼

𝛾

𝛽⊓𝛾

𝛼 𝛽

𝑞0 𝑞1

𝑞2

𝑞3

𝑞1 = 𝛽 (𝛼𝛽)∗ ^→ G𝛾
(𝛽 ? 𝜕(G𝛾)) ∨ (𝛽 ? (𝛼𝛽)∗ ^→ G𝛾)
� (𝛽⊓𝛾 ? G𝛾) ∨ (𝛽 ? (𝛼𝛽)∗ ^→ G𝛾)

𝑞2 = (𝛼𝛽)∗ ^→ G𝛾 (𝛼 ? 𝛽 (𝛼𝛽)∗ ^→ G𝛾)
𝑞3 = G𝛾 (𝛾 ? G𝛾)

If 𝛽 ⊓ 𝛾 . ⊥ then𝑀𝜙 is actually nondeterministic because the outgoing transition guards from 𝑞1
overlap, i.e., the disjunction 𝑞2 ∨ 𝑞3 is the leaf 𝜕(𝑞1) [𝑎] for any 𝑎 ⊨ 𝛽 ⊓ 𝛾 . ⊠

Example 7.9. Let 𝛼 and 𝛽 be two predicates in A such that ⟦𝛼⟧ = {𝑎} and ⟦𝛽⟧ = {𝑏} where
𝑎 ≠ 𝑏. Let 𝑅 = (𝛼 ·⊤)∗·𝛽 . The following table shows the transitions that arise in the NBW 𝑀{𝑅},

where UNSAT(𝛼⊓𝛽) is used to clean 𝜕({𝑅}). Observe that 𝛼𝑐⊓𝛽 ≡ 𝛽 . The table also shows𝑀!{𝑅}

where !{(𝛽 ? 𝜀)} = (𝛽 ? !{𝜀} : !{⊥}) � (𝛽 ?⊥ :⊤) � (𝛽𝑐 ?⊤).
𝑞 𝜕(𝑞) NBW 𝑀{𝑅} NBW 𝑀!{𝑅}

{𝑅} (𝛼 ? {⊤·𝑅} : (𝛽 ? {𝜀})) 𝛼

⊤𝛼𝑐⊓𝛽
⊤

{𝑅} {⊤·𝑅}

⊤

𝛼

⊤𝛼𝑐⊓𝛽𝑐 ⊤

!{𝑅} !{⊤·𝑅}

⊤
{⊤·𝑅} (⊤ ? {𝑅}) � {𝑅}
⊤(� {𝜀}) ⊤
Then 𝑎𝜔 |= {𝑅} because ∀𝑢 ≺ 𝑎𝜔 : ∃𝑥 : 𝑢·𝑥 � 𝑅. Note also that ℒ(G(𝛽𝑐 ) ∧ {𝑅}) = ℒ((𝛼𝛽𝑐 )𝜔 )
where 𝛼 holds in all even positions – a classical example not expressible in LTL [Wolper 1983]. ⊠

Example 7.10. With 𝛼, 𝛽 ∈ A let 𝜙 = (𝛼𝛽)𝜔 . We get the following NBW:

𝑞 𝜕(𝑞) = 𝜕(𝑟 ^→ X𝜙) OneStep(𝑟 ) NBW 𝑀𝜙

𝜙 𝜕(𝛼𝛽 ^→ X𝜙) � (𝛿 (𝛼𝛽) ^→ X𝜙) ⊥

𝛽

𝛼
(𝛼𝛽)𝜔 𝛽 ^→ X𝜙

� ((𝛼 ? 𝛽)^→ X𝜙) = (𝛼 ? 𝛽 ^→ X𝜙 :⊥^→ X𝜙)
� (𝛼 ? 𝛽 ^→ X𝜙)

𝛽 ^→ X𝜙 (𝛽 ? 𝜕(X𝜙))∨(𝛿 (𝛽) ^→ X𝜙) 𝛽

= (𝛽 ?𝜙)∨(𝛽 ? 𝜀 ^→ X𝜙 :⊥^→ X𝜙)
� (𝛽 ?𝜙)∨(𝛽 ?⊥ :⊥) � (𝛽 ?𝜙)∨⊥ � (𝛽 ?𝜙)

where many rewrite rules for � are being used. ⊠
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Recall that 𝑤 ..𝑖 = take(𝑖 + 1,𝑤) and 𝑤𝑖 .. = drop(𝑖,𝑤). A distributivity law that can be very

practical is that (𝑅1 ⋓ 𝑅2) ^→𝜙 ≡ (𝑅1 ^→𝜙) ∨ (𝑅2 ^→𝜙), because for all𝑤 ∈ Σ𝜔 it holds that

∃ 𝑖 : 𝑤 ..𝑖 � 𝑅1 ⋓ 𝑅2 ∧𝑤𝑖 .. |= 𝜙 ⇔ ∃ 𝑖 : (𝑤 ..𝑖 � 𝑅1 ∧𝑤𝑖 .. |= 𝜙) ∨ (𝑤 ..𝑖 � 𝑅2 ∧𝑤𝑖 .. |= 𝜙)
⇔ (∃ 𝑖 : (𝑤 ..𝑖 � 𝑅1 ∧𝑤𝑖 .. |= 𝜙)) ∨ (∃ 𝑖 : (𝑤 ..𝑖 � 𝑅2 ∧𝑤𝑖 .. |= 𝜙))

Theorem 4 describes the semantics of RLTL in terms of languages and derivatives. It shows that

the definition of derivatives correctly captures the intended semantics and is proved formally in

Lean in Section 7.6 along with all required background theory. Theorem 4 does not yet imply any

formal relationship with the corresponding ABW semantics, which is discussed in Section 7.7.

Theorem 4 (Derivation). ∀𝜙 ∈ RLTL⟨A⟩, 𝑎 ∈ Σ,𝑤 ∈ Σ𝜔 : 𝑎::𝑤 |= 𝜙 ⇔ 𝑤 |= 𝜕(𝜙) [𝑎]

The distributivity law of ^→ over union can be lifted and applied to derivatives through Theo-

rem 4. This is related to adapting the construction in [Antimirov 1996] for RLTL that can avoid

exponential blowup of the state space during incremental application of derivatives. Intuitively

this amounts to unfolding a regex into an NFA instead of a DFA while distributing ^→ over union.

A further derived law that follows is that

(𝑅1 ⋓𝑅2) □→𝜙 ≡ ¬((𝑅1 ⋓𝑅2) ^→¬𝜙) ≡ ¬(𝑅1 ^→¬𝜙) ∧¬(𝑅2 ^→¬𝜙) ≡ (𝑅1 □→𝜙) ∧ (𝑅2 □→𝜙)

Such laws can also be formalized and proved correct in Lean.

7.6 Formalization in Lean
In this section we describe some of the key features of the Lean formalization, which focuses on

the correctness of the derivative-based algorithm for RLTL given in Theorem 4.

Throughout the formalization we indicate the type of predicates by A (A in Lean) and the type

of alphabet as Σ. The two are connected by the notion of EBA (Σ,A, ⊨,⊥,⊤,⊔,⊓,𝑐 ) as formally

presented in [Zhuchko et al. 2024] using type classes, where Σ is marked as an out-param and is

thus automatically inferred from A. The inductive type TTerm represents TTerm⟨A,B⟩ where A
is the condition type and B (B in Lean) the leaf type.

inductive TTerm (A B : Type) : Type where
| Leaf : B → TTerm A B
| Node (condition : A) (_then : TTerm A B) (_else : TTerm A B) : TTerm A B

The evaluation of a transition term 𝑓 for an element 𝑎 of type Σ is defined as follows in Lean

and the notation f[a] in Lean corresponds precisely to the math notation 𝑓 [𝑎].
def evaluation (a : Σ) (f : TTerm A B) : B :=

match f with
| Leaf b => b
| Node p f g => if a ⊨ p then evaluation a f else evaluation a g

notation f "[" a "]" => evaluation a f

The type Stream’Σ represents Σ𝜔 as functions from N to Σ, and is provided by the Lean standard

library along with drop, take, head, tail, and get functions where (get𝑤 𝑖) returns𝑤𝑖 .

We lift unary and binary operations to TTerm as presented in Section 3. The two crucial lemmas

used throughout the formalization show the correctness of the lifting operations:

theorem liftU (op : B → B’) {f : TTerm A B} (x : Σ) :
(lift_unary op f)[x] = op (f [x])

theorem liftB (op : B → B → B’) (f g : TTerm A B) (x : Σ) :
(lift_binary op f g)[x] = op (f [x]) (g [x])
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For example, if 𝑓 , 𝑔 ∈ TTerm⟨A,B⟩ and 𝑜 is a binary operation over B then the math expression

(𝑓 𝑜 𝑔) corresponds in Lean to the expression (lift_binary o f g). The liftU and liftB lemmas

are distribution laws for op and evaluation that correspond to (3) in Section 3.

7.6.1 Regular Languages. Before we can introduce semantics for infinite words, we have to define

the semantics for finite words. We base the general structure of our approach on the formalization

presented in [Zhuchko et al. 2024], which defines match semantics for regular expressions with

lookarounds. In our context, we simplify this by excluding the cases for lookarounds in the type

ERE. For a word v and a regular expression r, the match semantics v � r corresponds to the classical

semantics 𝑣 ∈ L(𝑟 ). The theorems below establish the equivalence between derivatives and the

classical language-based semantics, proved by induction on the match length:

theorem equivalenceNull {r : ERE A} : [] � r ↔ nullable r
theorem equivalenceDer {r : ERE A} : a::v � r ↔ v � (𝛿 r)[a]

The type of finite words Σ∗ is in Lean represented by List Σ where 𝜖 is the empty list [] in Lean.

7.6.2 𝜔-Regular Languages. We now show how we formalize the notion of 𝜔-regular language

presented by a regular expression 𝑅. Since a language is a set of infinite words, we define a stream

𝑤 to be in the 𝜔-closure of 𝑅 if it can be partitioned into subwords of non-zero lengths such that

each subword is in the language of 𝑅. We formalize this idea by requiring the existence of a stream

of natural numbers, called deltas, which indicates for any 𝑖 the length of the 𝑖-th subword minus

one. Each subword must then be accepted by 𝑅. A graphical description is given as follows:

a, b, c, d, e, f, g, h, i, l, m, . . .

2, 4, 1, . . .

w =

deltas =

We start by defining a function getWordStart which, given 𝑖 ∈ N, returns the starting position of

the 𝑖-th subword in the stream𝑤 by summing up the values of the stream of deltas up to 𝑖 .

def getWordStart (deltas : Stream’N) (i : N) : N :=
match i with
| 0 => 0
| .succ j => (getWordStart (tail deltas) j) + (head deltas) + 1

Note that in order to enforce the invariant that each subword has non-zero length, and since

the stream deltas represents lengths minus 1, each individual delta is incremented by 1 – the

calculation for 𝑖 > 0 is precisely

∑
𝑗<𝑖 1+Δ 𝑗 in Section 2.3 where Δ corresponds to deltas. This

explains the (head deltas) + 1 in the inductive case.

The central definition is IsDeltasOmegaLanguage, which expresses the idea that each subword in

w indicated by a given delta is recognized by r.

def IsDeltasOmegaLanguage (w : Stream’Σ) (r : ERE A) (deltas : Stream’N) : Prop :=
∀ (i : N),

let start := getWordStart deltas i
let len := (get deltas i) + 1
take len (drop start w) � r

that for 𝑖 > 0 corresponds to take(1+Δ𝑖 , drop(
∑

𝑗<𝑖 1+Δ 𝑗 ,𝑤)) ∈ L(𝑟 ). Finally, InOmegaLanguage
checks for the existence of a deltas that correctly partitions w into recognized subwords.

def InOmegaLanguage (w : Stream’Σ) (r : ERE A) : Prop :=
∃ (deltas : Stream’N), IsDeltasOmegaLanguage w r deltas

infixr:40 " ∈* " => InOmegaLanguage

In summary, we have that𝑤 ∈∗ 𝑟 ⇔𝑤 ∈ L(𝑟 )𝜔 . We use the following theorem.

theorem regexOmegaClosure {r : ERE A} : w ∈* r ↔ ∃ i > 0, take i w � r ∧ drop i w ∈* r
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7.6.3 RLTL Semantics. In Lean, we represent the models relation |= as a binary predicate models

between streams and RLTL formulas. The relation represents |= as defined by the rules (9–13) and

(23–27), and uses the models relation ⊨ of A as well as the models relation � of ERE A.

def models (w : Stream’Σ) : RLTL A → Prop
| RLTL.Pred p => head w ⊨ p
| ¬𝑙 𝜙 => ¬ models w 𝜙

| 𝜙 ∧𝑙 𝜓 => models w 𝜙 ∧ models w 𝜓

| 𝜙 ∨𝑙 𝜓 => models w 𝜙 ∨ models w 𝜓

| 𝜙 →𝑙 𝜓 => models w 𝜙 → models w 𝜓

| X 𝜙 => models (tail w) 𝜙

| 𝜙 U 𝜓 => ∃ j, models (drop j w) 𝜓 ∧ ∀ i < j, models (drop i w) 𝜙

| 𝜙 R 𝜓 => ∃ j, models (drop j w) 𝜙 ∧ ∀ k ≤ j, models (drop k w) 𝜓

∨ ∀ i, models (drop i w) 𝜓

| r ^→ 𝜙 => ∃ i, take (i + 1) w � r ∧ models (drop i w) 𝜙

| r □→ 𝜙 => ∀ i, take (i + 1) w � r → models (drop i w) 𝜙

| { r } => (∃ i, take i w � r) ∨ (∀ i > 0, ∃ x, (take i w) ++ x � r)
| r^𝜔 => w ∈* r

notation:52 lhs:53 " |= " rhs:53 => models lhs rhs

Similarly to the case of match semantics for regular languages [Zhuchko et al. 2024], we define

models as a function rather than an inductive predicate to avoid the negative occurrence of the

relation for the ¬𝑙 𝜙 constructor. Note that in Lean, the negation operator ¬ p is defined as p → ⊥.
In order to keep the definitions constructive, we introduce implication→𝑙 as a built-in operator in

Lean. The negative weak closure operator is defined in Lean as just syntactic sugar for ¬𝑙{r}.
The definition of derivatives of RLTL formulas closely follows the definitions (15–21) and

definitions (28–32) in Section 7.3. To illustrate this, we present the definition of the derivative for

the existential suffix implication and weak closure operators:

def derivative (r : RLTL A) : TTerm A (RLTL A) :=
| RLTL.Pred p => Node p (Leaf (Pred ⊤)) (Leaf (Pred ⊥))
...
| r ^→ 𝜙 => let lhs := Node (OneStep r) (derivative 𝜙) (Leaf (Pred ⊥))

lift_binary (· ∨𝑙 ·) lhs (lift_unary (fun x => x ^→ 𝜙) (𝛿 r))
| { r } => if nullable r then Leaf (Pred ⊤) else (lift_unary ({ . }) (𝛿 r))

prefix:max " 𝜕 " => RLTL.derivative

Another key definition is the OneStep predicate, which is essential for defining the derivative of

an RLTL formula. This is defined in terms of a helper function OneStep’ that computes the match

semantics of a derivative of an ERE regex. OneStep is defined as OneStep’ of the derivative of r.

def OneStep’ (tr : TTerm A (ERE A)) : A :=
match tr with
| Leaf r => if nullable r then ⊤ else ⊥
| Node p f g => (p ⊓ OneStep’ f) ⊔ (p𝑐 ⊓ OneStep’ g)

def OneStep (r : ERE A) := OneStep’ (𝛿 r)

The main correctness and completeness property of OneStep, as well as the invariants needed

for OneStep’, can be identified as follows:

theorem denoteOneStep’ {f : TTerm A (ERE A)} : [] � f[a] ↔ a ⊨ OneStep’ f
theorem denoteOneStep {r : ERE A} : [a] � r ↔ a ⊨ OneStep r

When handling the dual temporal operators U and R, the following expansion laws prove to be

particularly useful:

theorem expansion_release {𝜙 𝜓 : RLTL A} : w |= 𝜙 R 𝜓 ↔ w |= 𝜓 ∧𝑙 (𝜙 ∨𝑙 X(𝜙 R 𝜓))
theorem expansion_until {𝜙 𝜓 : RLTL A} : w |= 𝜙 U 𝜓 ↔ w |= 𝜓 ∨𝑙 (𝜙 ∧𝑙 X(𝜙 U 𝜓))
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Themain correctness theorem for derivatives, given in Theorem 4 states that taking the derivative

of an RLTL formula and then evaluating it on a single element of the domain preserves the match

semantics.

theorem derivation {𝜙 : RLTL A} : a::w |= 𝜙 ↔ w |= (𝜕 𝜙)[a]

The proof follows by induction on 𝜙 , using the correctness and completeness of OneStep and of

the standard match semantics of regular expressions on finite words. We highlight some key cases

of the proof and use the math formulation when presenting these for conciseness.

The proof of the case of existential suffix implication can be outlined as follows, although in Lean

the two directions of the equivalence are proved as separate implications and use also secondary

induction over 𝑖 . Recall that𝑤 ..𝑖 = take(𝑖 + 1,𝑤) and𝑤𝑖 .. = drop(𝑖,𝑤).

𝑎::𝑤 |= 𝑟 ^→𝜓 ⇔ ∃ 𝑖 : (𝑎::𝑤)..𝑖 � 𝑟 ∧ (𝑎::𝑤)𝑖 .. |= 𝜓

⇔ (𝑎::𝑤)..0 � 𝑟 ∧ 𝑎::𝑤 |= 𝜓 ∨ ∃ 𝑖>0 : (𝑎::𝑤)..𝑖 � 𝑟 ∧ (𝑎::𝑤)𝑖 .. |= 𝜓
†
⇔ 𝑎 ⊨ OneStep(𝑟 ) ∧ 𝑎::𝑤 |= 𝜓 ∨ ∃ 𝑖 : 𝑤 ..𝑖 � 𝛿 (𝑟 ) [𝑎] ∧𝑤𝑖 .. |= 𝜓

⇔ 𝑎 ⊨ OneStep(𝑟 ) ∧ 𝑎::𝑤 |= 𝜓 ∨ 𝑤 |= 𝛿 (𝑟 ) [𝑎] ^→ 𝜓
IH⇔ 𝑎 ⊨ OneStep(𝑟 ) ∧𝑤 |= 𝜕(𝜓 ) [𝑎] ∨ 𝑤 |= 𝛿 (𝑟 ) [𝑎] ^→ 𝜓

⇔ 𝑤 |= (OneStep(𝑟 ) ?⊤)[𝑎] ∧𝑤 |= 𝜕(𝜓 ) [𝑎] ∨ 𝑤 |= 𝛿 (𝑟 ) [𝑎] ^→ 𝜓

⇔ 𝑤 |= (OneStep(𝑟 ) ? 𝜕(𝜓 ))[𝑎] ∨ 𝑤 |= 𝛿 (𝑟 ) [𝑎] ^→ 𝜓

⇔ 𝑤 |= (OneStep(𝑟 ) ? 𝜕(𝜓 ))[𝑎] ∨ 𝛿 (𝑟 ) [𝑎] ^→ 𝜓

⇔ 𝑤 |= ((OneStep(𝑟 ) ? 𝜕(𝜓 )) ∨ 𝛿 (𝑟 ) ^→ 𝜓 ) [𝑎]
⇔ 𝑤 |= 𝜕(𝑟 ^→ 𝜓 ) [𝑎]

In step † the proof uses the theorem equivalenceDer as well as the theorem denoteOneStep. Step IH

indicates use of the induction hypothesis over RLTL formulas. The remaining proof steps make, on

multiple occasions, use of liftU, liftB for lifting operations over transition terms that is implicit

in the math formulation. It also uses the core properties of streams.

The proof of the case of weak closure {r} is largely based on theorems equivalenceDer and

equivalenceNull and does not use the induction hypothesis over RLTL formulas. Here we present

it as further two separate subcases when 𝑟 is nullable and when 𝑟 is not nullable and use the more

relaxed math notation to avoid liftU and liftB that are implicit.

If nullable(𝑟 ) = true then

𝑎::𝑤 |= {𝑟} ⇔ 𝑎::𝑤 |= ⊤ ⇔ 𝑤 |= ⊤[𝑎] ⇔ 𝑤 |= 𝜕({𝑟}) [𝑎] .

If nullable(𝑟 ) = false then

𝑎::𝑤 |= {𝑟}⇔ ∃ 𝑖 : take(𝑖, 𝑎::𝑤) � 𝑟 ∨ ∀ 𝑖>0 : ∃ 𝑥 : take(𝑖, 𝑎::𝑤)·𝑥 � 𝑟
⇔ ∃ 𝑖>0 : take(𝑖, 𝑎::𝑤) � 𝑟 ∨ ∀ 𝑖>0 : ∃ 𝑥 : take(𝑖, 𝑎::𝑤)·𝑥 � 𝑟
⇔ ∃ 𝑖 : take(𝑖,𝑤) � 𝛿 (𝑟 ) [𝑎] ∨ ∀ 𝑖 : ∃𝑦 : take(𝑖,𝑤)·𝑦 � 𝛿 (𝑟 ) [𝑎]
‡
⇔ ∃ 𝑖 : take(𝑖,𝑤) � 𝛿 (𝑟 ) [𝑎] ∨ ∀ 𝑖> 0 : ∃ 𝑥 : take(𝑖,𝑤)·𝑥 � 𝛿 (𝑟 ) [𝑎]
⇔ 𝑤 |= {𝛿 (𝑟 ) [𝑎]}⇔ 𝑤 |= {𝛿 (𝑟 )}[𝑎] ⇔ 𝑤 |= 𝜕({𝑟}) [𝑎]

While

‡
⇒ holds trivially,

‡
⇐ uses that take(1,𝑤)·𝑥 � 𝛿 (𝑟 ) [𝑎] implies that take(0,𝑤)·𝑦 � 𝛿 (𝑟 ) [𝑎]

holds with 𝑦 = take(1,𝑤)·𝑥 as a witness.

The final case that we illustrate here is 𝜔-closure r^𝜔 . In this case it is more intuitive to start

with the statement𝑤 |= 𝜕(𝑟𝜔 ) [𝑎]. The proof in Lean uses the theorem equivalenceDer as well as

the theorem denoteOneStep (and also liftU and liftB that are implicit here). Here the induction

hypothesis over RLTL formulas is not applicable. Recall also that 𝜕(X𝜑) = 𝜑 and that 𝑣 |= X𝜑 ⇔
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drop(1, 𝑣) |= 𝜑 . The step ★ uses the regexOmegaClosure theorem in Section 7.6.2.

𝑤 |= 𝜕(𝑟𝜔 ) [𝑎] ⇔ 𝑤 |= 𝜕(𝑟 ^→ X𝑟𝜔 ) [𝑎]
⇔ 𝑤 |= ((OneStep(𝑟 ) ? 𝑟𝜔) ∨ 𝛿 (𝑟 ) ^→ X𝑟𝜔 ) [𝑎]
⇔ 𝑎 ⊨ OneStep(𝑟 ) ∧𝑤 |= 𝑟𝜔 ∨𝑤 |= 𝛿 (𝑟 ) [𝑎] ^→ X𝑟𝜔

⇔ 𝑎 ⊨ OneStep(𝑟 ) ∧𝑤 |= 𝑟𝜔 ∨ ∃ 𝑖 : take(𝑖+1,𝑤) � 𝛿 (𝑟 ) [𝑎] ∧ drop(𝑖,𝑤) |= X𝑟𝜔

⇔ 𝑎 ⊨ OneStep(𝑟 ) ∧𝑤 |= 𝑟𝜔 ∨ ∃ 𝑖 : take(𝑖+2, 𝑎::𝑤) � 𝑟 ∧ drop(𝑖+2, 𝑎::𝑤) |= 𝑟𝜔

⇔ take(1, 𝑎::𝑤) � 𝑟 ∧ drop(1, 𝑎::𝑤) ∈∗ 𝑟 ∨
∃ 𝑖 : take(𝑖+2, 𝑎::𝑤) � 𝑟 ∧ drop(𝑖+2, 𝑎::𝑤) ∈∗ 𝑟

⇔ ∃ 𝑖 > 0 : take(𝑖, 𝑎::𝑤) � 𝑟 ∧ drop(𝑖, 𝑎::𝑤) ∈∗ 𝑟
★⇔ 𝑎::𝑤 ∈∗ 𝑟 ⇔ 𝑎::𝑤 |= 𝑟𝜔

The Lean formalization establishes full confidence in the derivative based semantics of RLTL. It also
provided feedback that helped to streamline the theory. One particular example is the definition

of OneStep(𝑟 ) that in its original form implicitly assumed A to be decidable by depending on

satisfiability checking in A, this assumption turned out to be unnecessary and lead to, both a

simpler definition of OneStep(𝑟 ) in Section 7.2 as well as a more general theory that applies also to

the case when A is undecidable.

7.7 Omega-Regularity Modulo Theories
Here we lift the classical concept of 𝜔-regular languages [Büchi 1960; McNaughton 1966] as the

languages accepted by ABW so as to be moduloA, and show that RLTL+⟨A⟩ captures𝜔-regularity
modulo A. We say that 𝐿 ⊆ Σ𝜔 is 𝜔A-regular if 𝐿 = ℒ(𝑀) for some𝑀 that is an NBWA . We lift

the following result from [Büchi 1960; McNaughton 1966] (see also [Thomas 1990, 1.1. Theorem])

as to be modulo A. Recall thatℒ(𝑅𝜔 ) = L(𝑅)𝜔 .
Theorem 5 (𝜔A-regularity). A language 𝐿 ⊆ Σ𝜔 is 𝜔A-regular⇔ there exist 𝑛 > 0 and regexes
{𝑅𝑖 }𝑛𝑖=1 and {𝑆𝑖 }𝑛𝑖=1 in RE⟨A⟩ such that 𝐿 =

⋃𝑛
𝑖=1 L(𝑅𝑖 )·ℒ(𝑆𝜔𝑖 ).

Proof. By using Lemma 2 and [McNaughton 1966]. □

Next we show that RLTL+⟨A⟩ captures 𝜔A-regularity. We use the following stepping lemma of

the transition function of any ABW, the proof of which is based on the definition of accepting runs.

For all 𝜙 ∈ B+(𝑄) lift the transition function 𝜚 to 𝜙 as usual, and for all 𝑎 ∈ Σ, 𝑢 ∈ Σ∗ let
𝜚 (𝜖, 𝜙) def

= 𝜙 𝜚 (𝑎::𝑢, 𝜙) def

= 𝜚 (𝑢, 𝜚 (𝜙) [𝑎]) .
Lemma 5. ∀𝑀 ∈ABWA, 𝜙 ∈B+(𝑄𝑀 ), 𝑢 ∈ Σ∗,𝑤 ∈ Σ𝜔 : 𝑢𝑤 ∈ℒ𝑀 (𝜙) ⇔ 𝑤 ∈ℒ𝑀 (𝜚𝑀 (𝑢, 𝜙)).
Recall the construction of the ABWA 𝑀𝜙 in Definition 7.6.

Theorem 6 (𝜔A-Regularity of RLTL+⟨A⟩).
(1) 𝐿 ⊆ Σ𝜔 is 𝜔A-regular⇔ ∃𝜙 ∈ RLTL+⟨A⟩ : 𝐿 = ℒ(𝜙)
(2) ∀𝜙 ∈ RLTL+⟨A⟩ : ℒ(𝜙) = ℒ(𝑀𝜙 )
Proof outline. Statement (1)‘⇒’ is proved by using Theorem 5. Statement (1)‘⇐’ follows from

statement (2). Statement (2) is proved by extending the proof in [Vardi 1995] to handle suffix

implications. The proof is by induction over 𝜙 and makes use of Lemma 5. Regex closure formulas

are additional base cases that are based on derivative laws of ERE.
In order to improve readability we make use of more light-weigth notations. In particular, we

write𝑤 ⊩ 𝜑 for𝑤 ∈ ℒ𝑀 (𝜑) and recall that𝑤 ..𝑖 = take(𝑖 +1,𝑤) and𝑤𝑖 .. = drop(𝑖,𝑤). The statement

(2) is for any 𝜙 ∈ RLTL+⟨A⟩ equivalently formulated as

∀𝑤 ∈ Σ𝜔 : 𝑤 ⊩ 𝜙 ⇔ 𝑤 |= 𝜙
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We illustrate the key induction case of ^→ and use of Lemma 5. By construction of 𝑀 = 𝑀𝜙 we

have that 𝜕(𝑞) � 𝜚𝑀 (𝑞) and we let 𝜚 = 𝜚𝑀 below. We also implicitly use the following property:

∀𝑅 ∈ ERE⟨A⟩, 𝑎 ∈ Σ, 𝑢 ∈ Σ∗ : 𝑎 ⊨ OneStep( ˆ𝛿 (𝑢, 𝑅)) ⇔ 𝑢𝑎 � 𝑅

Let 𝑤 ∈ Σ𝜔 and 𝜙 = 𝑅 ^→𝜓 . The induction case is to prove that 𝑤 ⊩ 𝜙 ⇔ 𝑤 |= 𝜙 and by the

induction hypothesis it holds that ∀𝑣 ∈ Σ𝜔 : 𝑣 ⊩ 𝜓 ⇔ 𝑣 |= 𝜓 . Let 𝒌 ∈ N be some large number.

𝑤 ⊩ 𝑅 ^→𝜓
Lma 5⇔ 𝑤1.. ⊩ 𝜚 (𝑅 ^→𝜓 ) [𝑤0]
(28)

⇔ 𝑤1.. ⊩ ((OneStep(𝑅) ? 𝜕(𝜓 )) ∨ (𝛿 (𝑅) ^→𝜓 )) [𝑤0]
(3)

⇔ (𝑤0 � 𝑅 ∧𝑤1.. ⊩ 𝜕(𝜓 ) [𝑤0]) ∨𝑤1.. ⊩ ˆ𝛿 (𝑤0, 𝑅) ^→𝜓
Lma 5⇔ (𝑤 ..0 � 𝑅 ∧𝑤0.. ⊩ 𝜓 ) ∨𝑤1.. ⊩ ˆ𝛿 (𝑤 ..0, 𝑅) ^→𝜓
†
⇔ ∨

𝑖<𝒌 (𝑤 ..𝑖 � 𝑅 ∧𝑤𝑖 .. ⊩ 𝜓 ) ∨𝑤𝒌 .. ⊩ ˆ𝛿 (𝑤 ..𝒌−1, 𝑅) ^→𝜓
‡
⇔ ∃𝑖 : 𝑤 ..𝑖 � 𝑅 ∧𝑤𝑖 .. ⊩ 𝜓

IH⇔ ∃𝑖 : 𝑤 ..𝑖 � 𝑅 ∧𝑤𝑖 .. |= 𝜓
(23)
⇔ 𝑤 |= 𝑅 ^→ 𝜓

In † we repeated the unfolding 𝒌 times similarly to the previous steps, by using Lemma 5, for

some large enough 𝒌 . In ‡ we used the key property that all states 𝑟 ^→𝜓 in𝑀 are nonaccepting
and would cause an infinite branch ( ˆ𝛿 (𝑤 ..𝒌+𝑖 , 𝑅) ^→𝜓 )𝑖≥0 containing no accepting states if visited

infinitely often, i.e., any state
ˆ𝛿 (𝑤 ..𝑛, 𝑅) ^→𝜓 acts as ⊥ because it is not visited for any 𝑛 ≥ 𝒌 . □

Derivatives of 𝑅𝜔 work correctly in Theorem 4, and therefore also when considering ¬(𝑅𝜔 )
because the semantics is based on RLTL. However, the complemented derivatives arising from
¬𝜕(𝑅𝜔 ) would in general have incorrect semantics as transitions of an ABW, as illustrated next.

Example 7.11. Let 𝛼 ∈ A, 𝑎 ∈ ⟦𝛼⟧, and 𝜑 = (𝛼 ·𝛼)𝜔 , so 𝑎𝜔 |= 𝜑 . The following derivatives arise

from 𝜑 by (32) and (28), and where OneStep(𝑟 ) shows the predicate used in (28). If we were to start

from ¬𝜑 , by just negating the transition terms, we end up with an erroneous automaton𝑀err
:

𝑞 𝜕(𝑞) OneStep(𝑟 ) 𝜕(¬𝑞) 𝑀err

𝜑 (𝛼 ?𝛼 ^→ X𝜑) ⊥ (𝛼 ?¬(𝛼 ^→ X𝜑) :⊤)
𝛼

𝛼𝑐

⊤
𝛼𝑐𝛼

¬𝜑 𝛼 □→¬X𝜑 ⊤𝛼 ^→ X𝜑 (𝛼 ?𝜑) 𝛼 (𝛼 ?¬𝜑 :⊤)

where the state 𝛼 □→¬X𝜑 is accepting, so 𝑎𝜔 ∈ ℒ(𝑀err) while 𝑎𝜔 ̸ |= ¬𝜑 . ⊠

8 Related Work
Derivatives. Transition regexes for extended regular expressions [Stanford et al. 2021], a symbolic

generalization of [Brzozowski 1964], have been implemented in Z3 [de Moura and Bjørner 2008].

We view TTerm⟨A, LTL⟩ as a symbolic generalization of Vardi’s derivatives for LTL [Vardi 1995].

LTL based monitoring also uses classical derivatives [Havelund and Roşu 2001; Sen et al. 2003]

combined with the decision procedure from [Hsiang 1985]. The relationship between using the

tableaux method for LTL [Wolper 1985] vs. linear factors from [Antimirov 1996] were studied in

[Sulzmann and Thiemann 2018]. The work in [Antimirov and Mosses 1995] studies Horn-equational

reasoning as an alternative to derivatives.

Alternation Elimination. The original alternation elimination algorithm for ABW [Miyano and

Hayashi 1984] was studied in-depth by [Boker et al. 2010] with an improved lower bound 𝑂 (𝑛2𝑛)
for ordered ABW.

Non-emptiness of ABW resulting from LTL is studied in [Bloem et al. 1999] through classification

into weak and terminal cases where the problem is easier than in the general case.
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The LTL to NBW procedure in [Fritz 2003] starts with an ABW and then computes delayed

simulation relations on-the-fly using 𝜖-transitions. In the final phase the ABW is translated into an

NBW via [Miyano and Hayashi 1984].

The widely used algorithm of [Gerth et al. 1995] uses tableau to translate LTL into NBW. It first

constructs a Generalized Büchi automaton (GBA) that is then, via a well-known encoding, translated

into an NBW. Tableau based techniques for LTL were initially studied by Wolper [Wolper 1981,

1983, 1985]. A further extension of the tableau based technique for LTL is introduced in [Couvreur

1999] using on-the-fly expansion of transition Büchi automata.
Vardi’s [Vardi 1994, Theorem 14, Proof] is the first LTL to ABW construction defined in terms of

a step-wise unwinding essentially as derivatives. This construction is not symbolic, as it uses the

next element to directly compute a Boolean combination of successor states. The work in [Tsay and

Vardi 2021] gives a full construction of LTL to symbolic co-ABW. While aspects of the construction

are similar to the one in our work, by being based on a symbolic representation of 𝜌 (𝑞, 𝑎) – a key

difference is in the representation of 𝜚 (𝑞) as a transition term providing a natural separation of

concerns between evaluation of transitions from their target state formulas, that moreover works

with any EBA A. The work in [Gastin and Oddoux 2001] modifies Vardi’s original construction to

produce very weak co-ABW instead, prior to the GBA transformation.

The algorithm in [Wulf et al. 2008] defines symbolic ABW (sABW) where transition relations are

Boolean combinations of literals and successor states, where incremental satisfiability and model

checking methods use BDDs [Bryant 1986] both as the alphabet theory and to represent sets of

states. For the construction from LTL to sABW the work refes to [Gastin and Oddoux 2001; Vardi

1995].

The first proof that LTL can be translated into Büchi automata appears in [Muller et al. 1988]. It

uses weak alternating automata over trees and applies the reduction in [Muller et al. 1986].

The ITE aspect of transition terms is not preserved in the above works and the close relation

between states as formulas, even if maintainable in some form in a GBA, gets then lost in the

translation to NBW.

Extensions of LTL with Background Theories. In addition to related work discussed in Section 1,

LTL with constraints [Demri and D’Souza 2007] is a fragment of first-order LTL, where LTL with

Presburger arithmetic [Demri 2006] is a typical extension of LTL. While many decidable fragments

exist, such as CLTL(D) [Demri and D’Souza 2007], constraint extensions in general lead to un-

decidability. Further extensions of LTL over infinite domains are introduced in [Grumberg et al.

2012] and subsequently formalized with generalized register automata in [Grumberg et al. 2013].

In [Faran and Kupferman 2018], LTL with arithmetic or LTLA is studied further with a focus on

its decidable and undecidable fragments, where the model-checking problem of the existential

fragment is shown to be in PSPACE and the problem is studied also for hierarchical systems.

Recent work in [Geatti et al. 2022] extends LTLwithmodulo theories over finite strings, the theory
is generally undecidable. The work in [D’Antoni and Veanes 2017b] extends M2L-STR [Henriksen

et al. 1995; Klarlund et al. 2002] (WS1S [Büchi 1960] for finite strings) as to be modulo theories.

Recently LTLmodulo theories has also been studied in [Rodríguez and Sánchez 2023] for realizability
of temporal specifications where the core algorithms in connection to modulo theories are based

on a variant of bitblasting combined with an interpretation back to SMT models. The most recent

work in [Heim and Dimitrova 2025] further extends LTL⟨A⟩ realizability by allowing primed
theory variables, which greatly increases scalability for practical applications. Let𝑤 be a stream of

interpretations over a set 𝑋 ∪ {𝑥 ′ | 𝑥 ∈ 𝑋 } of theory variables. In terms of LTL⟨A⟩ or RLTL⟨A⟩
semantics, all valid streams𝑤 ∈ Σ𝜔 must then satisfy the additional semantic condition ∀𝑖 ∈ N, 𝑥 ∈
𝑋 : 𝑤𝑖 (𝑥 ′) = 𝑤𝑖+1 (𝑥). For example, G(𝑥 ≤ 𝑥 ′) implies that 𝑥 is never decreasing.
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In the above works derivatives are not being used and the techniques are in general orthogonal

to what we propose here and further extend into RLTL⟨A⟩.

Extensions of LTL to 𝜔-Regularity. It has been widely recognized that full 𝜔-regularity is funda-

mental for general applications of linear temporal properties [Pnueli 1985]. Classical LTL expresses

precisely the star-free fragment of𝜔-regular events [Emerson 1991], e.g., it cannot express𝜔-regular

properties such as (𝑝 ·⊤)𝜔 (𝑝 holds in all even positions) [Wolper 1983]. Several𝜔-regular extension

of LTL have been proposed: ETL [Vardi and Wolper 1994], LTL with fixpoint operators [Banieqbal
and Barringer 1989], QPTL [Sistla et al. 1987] using quantifiers, and ForSpec [Armoni et al. 2002]

using regular expressions over propositions. MONA [Henriksen et al. 1995] also supports LTL and

is 𝜔-regular. [Bustan et al. 2005, Proposition 3.14] notes that 𝜔-regularity of ForSpec also carries

over to PSL [Eisner and Fisman 2006].

Our extension RLTL⟨A⟩ of LTL⟨A⟩ with ^→ and {·} was inspired by SPOT [Duret-Lutz 2024;

Duret-Lutz et al. 2022] and PSL because both of those operators elegantly admit incremental

derivative based unfolding. Originally ^→ appears in ForSpec as follows_by and is also related

to the ^-modality in PDL [Fischer and Ladner 1979]. The primary purpose of PSL is for formal

specification of concurrent systems. SPOT is a state-of-the-art verification tool that supports a

large subset of PSL, including many optimizations that originate from [Cimatti et al. 2008]. RLTL
covers a core subset of PSL that is consistent with the semantics of suffix implications in SPOT,

but differs in one important aspect in regard to weak closure (and its negation), namely that, for

any nullable regex 𝑅, {𝑅} ≡ ⊤. For a PSL formula {𝑅} the corresponding weak closure in RLTL is

{𝑅 ⋒ ⊤+}. This difference is driven by the semantics of derivatives that effectively enforces the law
{𝑅} ≡ ⊤ whenever 𝑅 is nullable, in order to maintain an algebraically well-behaved system of rules.

Thus, some rewrite rules in SPOT, like {𝑟∗} ≡ {𝑟}, are invalid in RLTL.
RLTL also supports regex complement that comes naturally because of the built-in duality law of

transition regexes: ~(𝛼 ? 𝑓 :𝑔) ≡ (𝛼 ? ~𝑓 : ~𝑔) [Stanford et al. 2021, Lemma 4.2]. It is difficult and

highly impractical to support ~ by other means, because it would in general require determinization
of SFAs [Veanes et al. 2010] that is avoided by the duality law that propagates ~ lazily.

A fundamental difference is that RLTL lifts (a core subset of) PSL as to be modulo theories, while
in PSL the atomic regexes 𝛼 are Boolean combinations of propositions.

9 Future Work and Open Problems
The paper presents a self-contained framework with both theory and algorithms to implement

symbolic model checking of RLTL⟨A⟩. We implemented a prototype in F# where for nonemptiness

we used the meticulously presented nested depth-first cycle detection algorithm in [Courcoubetis

et al. 1992, Algorithm B], that required essentially no modifications. However, it is premature and

out of scope to discuss that implementation here. For proper evaluation, one needs a standard that,

e.g., combines PSL with SMT-LIB [SMT-LIB 2021], in order to express modulo theories, which, as

of today, does not exist. That said, there are many interesting open problems we mention below.

Several kinds of optimizations can be applied. All leaves in DNF can be maintained as antichains
based on (4) and leverage techniques from [Abdulla et al. 2010; Filiot et al. 2009; Wulf et al. 2008].

At the automata level, we believe that (bi)simulation algorithms [Abdulla et al. 2010; Bonchi and

Pous 2013; Bustan and Grumberg 2003; Etessami et al. 2005; Fritz 2003; Fritz and Wilke 2002, 2005;

Gurumurthy et al. 2002; Mayr and Clemente 2013] can be lifted to NBWA similarly to the case of

SFAs [D’Antoni and Veanes 2014, 2016, 2017a; Holík et al. 2018] that lift algorithms from [Bustan and

Grumberg 2003; Hopcroft 1971; Paige and Tarjan 1987]. Symbolic derivatives can also be relevant

for DBWA – NBWA that omits ∨ – and revisit results in [Baarir and Duret-Lutz 2014; Babiak et al.

2012; Baier and Katoen 2008; Diekert et al. 2015; Finkbeiner and Schewe 2005; Kupferman and
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Rosenberg 2010; Kurshan 1987; Tourneur and Duret-Lutz 2017]. Implementation of TTerm can

potentially also use generic BDDs [D’Antoni and Veanes 2017b] or Shannon expansions [Shannon
1949] for structure sharing. Dead state detection in𝑀𝑅 can use [Stanford and Veanes 2023].

To reduce the constant 4 in product of NBWA , we believe one can lift the algorithm in [Choueka

1974] ([Kupferman 2018, Theorem 2]) to be modulo A. For NBW complementation [Büchi 1960]

([Kupferman 2018, Theorem 4]), an open question is if derivatives can be used to lift complementa-

tion to be modulo A to support ¬(𝑅𝜔 ) incrementally.

Counterfactual reasoning in form of causality analysis of 𝜔-regular properties has recently been

proposed in [Coenen et al. 2022]. In this context QPTL [Sistla et al. 1987] and HyperQPTL [Beutner

and Finkbeiner 2023] are the target formalisms used in the tool developed in [Beutner et al. 2023].

Could derivatives be developed for HyperQPTL and be useful to extend causality analysis as to be

modulo background theories?

The past operator does not increase expressivity of LTL [Gabbay et al. 1980] but is practically

very useful [Armoni et al. 2002; Kupferman and Pnueli 1995; Kupferman et al. 2012; Laroussinie

et al. 2002; Lichtenstein et al. 1985]. Fair correctness [Varacca and Völzer 2006] also relates to past.
Derivatives are inherently forward looking, so understanding how to support past is intriguing.
Counting [Laroussinie et al. 2010] with derivatives is another interesting topic. Could derivatives

be developed for CTL [Piterman and Pnueli 2018] where trees rather than words are the semantic

foundation? Derivatives for finite trees have been studied in [Attou et al. 2021].

A future challenge is to also formalize the other parts of the theory in Lean, including Theorem 1

and Theorem 6, for which the formalization developed here provides a necessary basis. Due to the

intricate semantics of ABWA , such a formalization is an invaluable aid, not only for establishing

correctness, but also to serve as a platform for formally validating correctness of new rewrite rules

and other algorithmic optimizations. Formalizing Theorem 1 in Lean is a very difficult task, as it

would require formalizing a generalization of [Miyano and Hayashi 1984] that is one of the most

technically involved proofs in the classical literature of 𝜔-regularity. A difficult aspect regarding

a Lean formalization of either Theorem 1 or Theorem 6 is connected to the fact that automata

algorithms are cumbersome to express in a proof assistant because, unlike trees or regexes or

formulas, graphs are typically not defined inductively.

10 Conclusion
We have shown how transition terms and symbolic derivatives can be used to define a realizable

symbolic semantics for (alternating) Büchi automata and linear temporal logic (LTL). The semantics

is parameterized by an EBA for the base alphabetic domain, which enables it to apply to𝜔-languages

and infinite alphabets in an algebraically well-defined and precise manner. This framework allows

syntactic rewrite rules for LTL extended with regular expressions (RLTL) to be applied on-the-fly
during alternation elimination, where they simultaneously respect the semantics of RLTL formulas

and their alternating Büchi automata. Similarly to the new algorithm Æ, there is a rich landscape

of further optimizations and algorithms yet to be discovered.
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